
Categorical databases

David I. Spivak

dspivak@math.mit.edu

Mathematics Department
Massachusetts Institute of Technology

Presented on 2017/03/29

at the Broad Institute

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 1 / 58

dspivak@math.mit.edu

Introduction Purpose of the talk

Purpose of the talk

We live in a world of interacting entities.

Humans interact with machines.
Companies interact with companies.
Databases interact with applications.
And so on, ad infinitum.

Each entity has its own internal language optimized for operating in
some context.

Interaction between entities is mediated by an interaction between
their languages.

Communication is the successful transfer of information through
interaction.

We need to find a formal underpinning for meaningful communication.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 2 / 58

Introduction Databases as languages

Databases as languages

A database schema serves as a language, optimized for the operation
of some entity in some context.

But today, entities and contexts change more and more frequently.

We need to transfer information not only to others, but to our later,
different selves.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 3 / 58

Introduction Databases as languages

Data management: how to change the form?

We should think of data management as one simple idea: a translation of
information from one form to another.

An ETL process translates from normalized form to warehouse form.

A data migration translates between databases, from one schematic
form to another.

A query against a database translates from all-purpose form to
specific-purpose (bite-size) form.

An update does not change the schematic form, but still procedurally
translates information.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 4 / 58

Introduction Category theory for managing change of form

Category theory for managing change of form

There is an fundamental connection between databases and
categories.

I propose that:

Category theory can simplify how we think about and use databases.

We can clearly see all the working parts and how they fit together.

Powerful theorems can be brought to bear on classical DB problems.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 5 / 58

Introduction The pros and cons of relational databases

The pros and cons of relational databases

Relational databases are reliable, scalable, and popular.

They are provably reliable to the extent that they strictly adhere to
the underlying mathematics.

Make a distinction between

the “relational database” system you know and use, vs.
the relational model, as a mathematical foundation for this system.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 6 / 58

Introduction The pros and cons of relational databases

You’re not really using the relational model.

Current implementations have departed from the strict relational
formalism:

Tables may not be relational (duplicates, e.g from a query).
Nulls (and labeled nulls) are commonly used.
Updates are outside the model.

The theory of relations (150 years old) is not adequate to
mathematically describe modern DBMS.

The relational model is either clumsy or completely absent in
describing:

Foreign keys,
Updates,
Schema mappings and data migration,
Distributed databases, etc.

Databases have been intuitively moving toward what’s best described
with a more modern mathematical foundation.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 7 / 58

Introduction The pros and cons of relational databases

Category theory gives better description

Category theory (CT) does a better job of describing what’s already
being done in DBMS.

Functional dependencies, foreign keys, key generation.
Non-relational tables (e.g. duplicates in a query).
Labeled nulls and semi-structured data.

CT offers guidance for all sorts of information hand-off:

Foreign key as a handoff from one table to another.
Query as a handoff from general schema to specific schema.
ETL as a handoff from normalized schema to unnormalized schema.
Data migration as information handoff from one schema to another.
Update as information handoff from a schema to itself.
Applications as information handoff between programming language
and database.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 8 / 58

Introduction What is category theory?

What is category theory?

Category theory is the mathematics of information handoff.

That is, CT is about integrity of relationship under change of form.

Since its invention in the early 1940s, category theory has
revolutionized math.

It’s like set theory and logic, except more about semantics and
designed to build bridges.

Category theory has been proposed as a new foundation for
mathematics (to replace set theory).

It was invented to build bridges between disparate branches of math
by distilling the essence of mathematical structure.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 9 / 58

Introduction What is category theory?

Branching out

Category theory naturally fosters connections between disparate fields.

It has branched out of math and into physics, linguistics, and
materials science.

It has had much success in the theory of programming languages.

Haskell is based in category theory and is gaining popularity.
The pure category-theoretic concept of monads has vastly extended the
reach of functional programming.

Can category theory improve how we think about databases?

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 10 / 58

Introduction The basic similarity between databases and categories

The basic similarity between databases and categories

The connection between databases and categories is simple and
strong.

Reason: categories and database schemas do the same thing.
A schema gives a framework for modeling a situation;

Tables
Attributes

This is precisely what a category does.

Objects
Arrows.

They both model how entities within a given context interact.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 11 / 58

Introduction The basic similarity between databases and categories

Today’s talk: Categorical model of databases

There are many possible category-theoretic models of databases.

The power of category theory is that these will all be comparable and
interoperable.

Reason: category theory is based on behavior, not implementation.
When two models are describing similar behavior, they can be
categorically compared.

Today’s talk will be about one particular model, which we’ll call the
functorial data model.

The functorial data model is what you get when you demand:

Schema = Finite Category.

•Emp // •Deptoo

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 12 / 58

Introduction The category of categories

The category of categories

Any finite category acts as a database schema.

It models the interactions between tables, via columns.
The semantics of this category is captured by an instance of the
database.
Each instance describes the relationship between rows from interacting
tables.

But there is also a category of categories.

It models the interactions between database schemas.
The semantics of this category is understood as data migration,
querying, etc.
Each data migration describes the relationship between instances of
interacting schemas.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 13 / 58

Introduction Rest of the talk

Rest of the talk

Lay out the basic idea of categories and that of databases, and show
the tight connection between them.

Discuss querying, schema evolution, and data migration.

Develop a connection to programming language theory.

Understand RDF in these terms.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 14 / 58

“Databases are categories” First some math

What is a category?

Idea: A category models entities of a certain sort
and the relationships between them.

C :=

•A f // •B

h

<<

g
%%
•C

•D
i
��

j
%%
•E

k

bb

Think of it like a graph: the nodes are entities and the arrows are
relationships.

Some paths can be declared equivalent to others

Example: declare that j ; k ' i ; i ; i and f ; g ' f ; h.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 15 / 58

“Databases are categories” First some math

Example

How could one interpret this kind of abstraction?

Here’s a category with English-labeled nodes and arrows:

C :=

self email is an email from a person =

self email is an email to a person

•Self-email is an // •Email

to a

99

from a))
•Person

Such “business rules” can be encoded into the category.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 16 / 58

“Databases are categories” First some math

What is the essence of structure?

If mathematics is the art of getting organized, what organizes math?

After thousands of years, people realized that there were some
essential features in common throughout much of math.

These are objects, arrows, paths, and path equivalence.

Or: things, tasks, processes, and “sameness of outcome”.

Or: primary keys, foreign keys, paths of FKs, and path equations.

Let’s give the definition.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 17 / 58

“Databases are categories” First some math

Definition of a category I: Constituents

A category C consists of the following constituents:
1 A set Ob(C), called the set of objects of C.

(These will be tables.)
Objects x ∈ Ob(C) is often written as •x .

2 A set Arr(C), called the set of arrows of C, and two functions

src , tgt : Arr(C)→ Ob(C),

assigning to each arrow its source and its target object, respectively.

(Arrows will be foreign keys from “source” table to “target” table.)

An arrow f ∈ Arr(C) is often written •x f−−−→ •y , where
x = src(f), y = tgt(f).
We define a path in C to be a finite “head-to-tail” sequence of arrows

in C, e.g. •x f−−−→ •y g−−−→ •z .

3 An notion of equivalence for paths, denoted '.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 18 / 58

“Databases are categories” First some math

Definition of a category II: Rules

These constituents must satisfy the following requirements:
1 If p ' q are equivalent paths then the sources agree: src(p) = src(q).
2 If p ' q are equivalent paths then the targets agree: tgt(p) = tgt(q).
3 Suppose we have two paths (of any lengths) b → c:

• // · · · // •
��@@@@

•b

??~~~~

 @@@@@

p
&&o

i d _ Z U
O

q
88O

U Z _ d i
o
•c

• // · · · // •

??~~~~~

If p ' q then for any extensions

•a m // •b '

p

''o j _ T O

q

77O T _ j o•
c or •b

p

''o j _ T O
'

q

77O T _ j o•
c n // •d

m; p ' m; q and p; n ' q; n.
David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 19 / 58

“Databases are categories” What does equivalence of paths mean?

What does equivalence of paths mean?

Arrows represent foreign keys.

A path p : •a → •b represents “following foreign keys” from table a to
table b.

Following a path p, we can take any record in table a and return a
record in table b.

We declare two paths p, q : •a → •b equivalent if they should return
the same record in b for any record in a.

In typical DB practices, equivalent paths are avoided by cutting one
of the paths.

This is considered good design.
However, it often causes pain in ones neck.
Category theory has this concept built in.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 20 / 58

“Databases are categories” Examples of categories

The category of Sets

Above we see two sets and a function between them. We would

denote this categorically by •A f−−→ •B
The objects of Set represent sets.
The arrows in Set represent functions.
A path represents a sequence of composable functions.
Two paths are equivalent if their compositions are the same.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 21 / 58

“Databases are categories” Examples of categories

A totally different category: an ordered set

A ordered set is a set S together with a notion of ≤, satisfying
a ≤ a for all a ∈ S , and
if a ≤ b and b ≤ c , then a ≤ c .

Given some ordered set S , we can build a corresponding category S:
Ob(S) = S ,
One arrow a→ b if a ≤ b
No arrows a→ b if a 6≤ b.
All pairs of paths (having same source and target) are equivalent.

“Hasse diagram”:

•a

&&MMMMMM •b

•c
88rrrrrr

&&LLLLLL

•d
88qqqqqq

&&MMMMMM •e •f

•g
88rrrrrr

Think “permissions”: a ≤ c means a has fewer accessors than b.
David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 22 / 58

“Databases are categories” Examples of categories

Functors: mappings between categories

One way to think of a category is as a directed graph, where certain
paths have been declared equivalent.

A functor is a graph mapping that is required to respect equivalence
of paths.

Definition: A functor F : C → D consists of

a function Ob(C)→ Ob(D) and
a function Arr(C)→ Path(D),

such that F

respects sources and targets,
respects equivalences of paths.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 23 / 58

“Databases are categories” Functors to Set

Functors to Set

A category C is a system of objects and arrows, and an equivalence
relation on its paths.

A functor C → D is a mapping that preserves these structures.

Set is the category whose objects are sets, whose arrows are functions,
and where paths are equivalent if they compose to the same function.

If C is the category on the left below, then a functor I : C → Set
might look like this:

C :=

A
f //

g
��

B

C

; I :=

•a1 •a2 •a3

a1 7→ b1
a2 7→ b1
a3 7→ b2 //

��

•b1•b2

•c1

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 24 / 58

“Databases are categories” What is a database?

What is a database?

A database consists of a bunch of tables and relationships between
them.

The rows of a table are called “records” or “tuples.”

The columns are called “attributes.”

An attribute may be “pure data” or may be a “key.”

A table may have “foreign key columns” that link it to other tables.
A foreign key of table A links into the primary key of table B.

A schema may have “business rules.”

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 25 / 58

“Databases are categories” Foreign Keys and business rules

Foreign Keys and business rules

Example:

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr
q10 Sales 101
x02 Production 102

Note the Id (primary key) columns and the foreign key columns.

Id column could just be internal “row numbers” or could be typed.
“Row numbers” (i.e. pointers) are not part of the relational model but
they are naturally part of the categorical model.

Perhaps we should enforce certain integrity constraints (business
rules):

The manager of an employee E must be in the same department as E ,
The secretary of a department D must be in D.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 26 / 58

“Databases are categories” Foreign Keys and business rules

Data columns as foreign keys

Theoretically we can consider a data-type as a 1-column table.
Examples:

String
Id
a
b

.

.

.
z
aa
ab

.

.

.

Integer
Id
0
1

.

.

.
9
10
11

.

.

.

So even data columns can be considered as foreign keys (to respective
1-column tables).

Conclusion: each column in a table is a key – one primary,
the rest foreign.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 27 / 58

“Databases are categories” Foreign Keys and business rules

Example again

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr
q10 Sales 101
x02 Production 102

String
Id
a
b

.

.

.
z
aa
ab

.

.

.

C :=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��<<<<<<< •Department

Secr

oo

Name

��
•String1 •String2 •String3

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 28 / 58

“Databases are categories” Database schema as a category

Database schema as a category

A database schema is a system of tables linked by foreign keys.
This is just a category!

C :=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��<<<<<<< •Department

Secr

oo

Name

��
•String1 •String2 •String3

Each object x in C is a table (Employee, Departments, String);
each arrow x → y is a column of table x .

Id column of a table corresponds to the trivial path on that object.

Declaring business rules (e.g. Mgr;Dpt' Dpt) is declaring the path
equivalence.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 29 / 58

“Databases are categories” Schema=Category, Instance=Set-valued functor

Schema=Category, Instance=Set-valued functor

Let C be the following category

C :=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��<<<<<<< •Department

Secr

oo

Name

��
•String1 •String2 •String3

A functor I : C → Set consists of

A set for each object of C and
a function for each arrow of C, such that
the declared equations hold.

In other words, I fills the schema with compatible data.

Categorical databases could also be called functional databases.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 30 / 58

“Databases are categories” Schema=Category, Instance=Set-valued functor

Data as a set-valued functor

C := I : C → Set

m; d ' d s; d ' idD

•Emp

d //

m

��

f

��
l

""EEEEEEE
•Dpt

s
oo

n

��
•Str •Str •Str

101,102,103
d //

m

��

f

��

l

$$IIIIIIIII
q10,x02

s
oo

n

��
a,b,. . . a,b,. . . a,b,. . .

.

A category C is a schema. An object x ∈ Ob(C) is a table.

A functor I : C → Set fills the tables with compatible data.

For each table x , the set I (x) is its set of rows.

The path equivalences in C are enforced by I as business rules.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 31 / 58

“Databases are categories” Schema=Category, Instance=Set-valued functor

Summary

The connection between categories and databases is simple.

A schema is a custom category.

Functors I : C → Set are instances.

What about functors F : C → D between schemas?

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 32 / 58

Functorial schema mapping and data migration Changes

Changes

We’ve discussed the situation as though static: a single schema and a
single instance.

Next we’ll discuss changes.

Changing the schema (schema mappings).

This topic covers data migration, queries, updates, and ETL in a
unified way.

Managing change: provenance.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 33 / 58

Functorial schema mapping and data migration Changes in schema

Changes in schema

Suppose in our modeling of a given context, we evolve from schema C
to schema D.

We should find a functorial connection between them.

Over time we may have something like

C = C0
F0−−−→ C1

F1−−−→ · · · Fn−1−−−−−→ Cn = D

We want to be able to migrate data from C to D and vice versa.

We want to be able to migrate queries against C to queries against D
and vice versa.

And we want this all to work as it “should”.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 34 / 58

Functorial schema mapping and data migration Changes in schema

Composing functors

Suppose F : C → D and G : D → E are functors.

What is their composition C → E?

We have a way to take objects in C to objects in E ,
Arrows in C turn into paths in D and arrows in D turn into paths in E .
We can concatenate these, thus taking arrows in C to paths in E .
Our rules ensure that the equivalences in C will be preserved in E .

Composing functors is going to make migrating data more
straightforward.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 35 / 58

Functorial schema mapping and data migration Changes in data

Changes in data

Let C be a schema and let I , J : C → Set be two instances.

A natural transformation p : I → J consists of the following:

For each object (table) T ∈ Ob(C) we get a map of record sets

pT : I (T)→ J(T).

For each arrow (foreign key) f : T → T ′, we get data consistency;
formally,

J(f) ◦ pT = pT ′ ◦ I (f).

A natural transformation p : I → J gives provenance:

A coherent story for how everything in I was transformed to something
in J.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 36 / 58

Functorial schema mapping and data migration Changes in data

The category of instances

Given a schema C, the category of instances on C is denoted C–Inst.

The objects of C–Inst are functors (instances) I : C → Set.
The arrows are natural transformations (provenance).
Two provenance paths are equivalent if they result in the same
“provenance story”.

Mathematicians have studied categories like C–Inst, decades before a
connection to databases was known.

In particular, the category C–Inst is a topos.
As such, it has an internal language and logic supporting the typed
lambda calculus.
That means, it works well with the theory of programming languages.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 37 / 58

Functorial schema mapping and data migration Data migration

Data migration

Let C and D be different schemas.

We call a functor between them, F : C → D, a schema mapping.

Given such a mapping, we want to be able to canonically transfer
instances on C to instances on D and vice versa.

That means, given F : C → D we want functors

C–Inst→ D–Inst

and
D–Inst→ C–Inst.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 38 / 58

Functorial schema mapping and data migration Data migration

What a functor C–Inst→ D–Inst means.

A functor C–Inst→ D–Inst means:

Objects: To every instance on C we associate an instance on D.

Arrows: Provenance between C-instances is converted to provenance
between their associated D-instances.

Path equivalences: Equality of provenance paths is preserved too.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 39 / 58

Functorial schema mapping and data migration The “easy” migration functor, ∆

The “easy” migration functor, ∆

Given a schema mapping (i.e. a functor)

F : C → D,

we can transform instances on D to instances on C as follows:

Given I : D → Set C F //

F ;I

66D I // Set get F ;I : C → Set

This process will preserve provenance.

Thus we have a functor ∆F : D–Inst→ C–Inst.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 40 / 58

Functorial schema mapping and data migration The “easy” migration functor, ∆

How ∆F works

Consider the schema mapping

C :=

•DptName

•Emp

�� &&MMMMMMM //

88qqqqqqq
•FrstNm

•SecLstNm •LstNm

F−−−−→

D:=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��<<<<<<< •Department

Secr

oo

Name

��
•String1 •String2 •String3

We get ∆F : D–Inst→ C–Inst

Given an instance on D we get one on C.

Given an (insert) update on D we get one on C.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 41 / 58

Functorial schema mapping and data migration The “easy” migration functor, ∆

So many kinds of functors..

Functors in three different contexts.

We started with functors as instances, I : C → Set.
Then we introduced functors as schema mappings, F : C → D.
In the last slide we showed a functor on instance categories

∆F : D–Inst→ C–Inst.

Recall the simple definition of functor we gave at the beginning: it
holds in each case.

Functors provide a powerful and reusable abstraction because of the
simplicity of their definition.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 42 / 58

Functorial schema mapping and data migration The “easy” migration functor, ∆

Adjoints

Some functors X → Y have a “special partner” Y → X called an
adjoint.

What it will mean to us is that we can always “invert” a data
migration D–Inst→ C–Inst in two universal ways.

These migration functors are “weak inverses” for ∆F .

As such they provide something like updatable views.

The important thing is to note is that these weren’t made up for
databases.

They are “canonical” or “universal”, and well-known in mathematics.
Coincidentally, they also correspond to well-known data management
operations.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 43 / 58

Functorial schema mapping and data migration The “adjoint” migration functors, Σ and Π

The “adjoint” migration functors, Σ and Π

Given a schema mapping (i.e. a functor) F : C → D,

We have a functor ∆F : D–Inst→ C–Inst given by composition.

It has two adjoints:

a “sum-oriented” adjoint ΣF : C–Inst→ D–Inst, and
a “product-oriented” adjoint ΠF : C–Inst→ D–Inst.

Thus, given a schema mapping F , three functors emerge for the
instance categories,

∆F ,ΣF , and ΠF

come with the package.

Roughly, these correspond to project (∆), union (Σ), and join (Π).

They allow one to move data back and forth between C and D in
canonical ways.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 44 / 58

Functorial schema mapping and data migration The “adjoint” migration functors, Σ and Π

The “product-oriented” push-forward ΠF makes joins

•SSN

•First

•T1

CC���������
::uuuuu

$$IIII •T2

ddIIIII

zzuuuu

�����������

•Last

•Salary

F−−−→

•SSN

•First

•U

DD									
::vvvvv

$$HHHH

��555555555

•Last

•Salary

Given any instance I : C → Set, get an instance ΠF (I) : D → Set.

The rows in table •U will be the join of the rows in •T1 and •T2 over
•First and •Last.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 45 / 58

Functorial schema mapping and data migration The “adjoint” migration functors, Σ and Π

The “sum-oriented” push-forward ΣF makes unions

C:=

•SSN

•First

•T1

CC���������
::uuuuu

$$IIII •T2

ddIIIII

zzuuuu

�����������

•Last

•Salary

F−−−→

D:=

•SSN

•First

•U

DD									
::vvvvv

$$HHHH

��555555555

•Last

•Salary

Given any instance I : C → Set, get an instance ΣF (I) : D → Set.

The rows in table •U will be the union of the rows in •T1 and •T2.

It will automatically use labeled nulls for the unknown cells.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 46 / 58

Functorial schema mapping and data migration Views

Views

These functors can be arbitrarily composed to create views.

We can think of any series of functors

C1 D1
F1oo G1 // E1

H1 // C2 D2
F2oo G2 // · · ·

Hn−1 // Cn

as a view.

The view is the functor

V := ΣHn−1 ◦ · · · ◦ ΠG1 ◦∆F1 : C1–Inst→ Cn–Inst.

We can export data from C1 into Cn through V .

Note that Cn is a schema: not just one table, but possibly many, with
foreign keys.

It’s no problem to create views that have foreign keys (unsupported in
DBMS).

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 47 / 58

Functorial schema mapping and data migration FQL, a functorial query language

FQL, a functorial query language

All of the above has been implemented in an open source tool.

It is called FQL, and you can get it at:
http://categoricaldata.net/fql.html

This is thanks to Ryan Wisnesky, a postdoc at MIT.

In the FQL programming language, one can do the following:

Enter categorical schemas (nodes, arrows, equations).
Enter schema mappings, i.e. functors (nodes to nodes, etc.).
Enter instances, i.e. functors C → Set.
Use ∆,Σ,Π to move data between schemas and perform queries.

FQL also has tools for translating to and from SQL and RDF.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 48 / 58

http://categoricaldata.net/fql.html

Functorial schema mapping and data migration Summary of functorial data migration

Summary of functorial data migration

By connecting different schemas graphically, we create data migration
functors.

These can be composed to move data from one schema to another.

But this is not just enterprise-level data migration.

The same idea covers:

Queries,
Data warehousing,
Updates.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 49 / 58

The interoperability of categories How’s the time?

How’s the time?

Shall we skip to the summary now, or keep going with programming
languages and RDF?

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 50 / 58

The interoperability of categories Connection to Programming Languages

Connection to Programming Languages

Functional programming languages are based on category theory.

The datatypes in a programming language form a category.

Think of each type (integers, etc.) as a table:

Each element of that type is a row.
Each program that eats that type is a column.

We’ve seen that database schemas are custom categories.

The whole point of category theory is to allow us to connect different
categories.

Upshot: it is straightforward to categorically connect programming
languages and databases.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 51 / 58

The interoperability of categories Structured vs. unstructured data

Structured vs. unstructured data

Think of RDF as the worst kind of data.

It’s easiest to get because it takes no effort to create.

Everyone’s talking about schema-less databases.

My colleague: “we don’t need schema-less, we need schema-more!”

In other words, lower the bar to creating tiny custom schemas.
Make it easy to translate between them.

Category theory can field the creation and interconnection of an
abundance of custom schemas.

Once you’ve lost the structure of data, it’s as easy to parse as a .jpeg.
If you keep even a modicum around, you can do much better.

But let’s say you want to think about RDF category-theoretically.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 52 / 58

The interoperability of categories The Grothendieck construction

The Grothendieck construction

Let C be a category and let I : C → Set be a functor.

We can convert I into a category Gr(I) in a canonical way:
Example:

C := A
f //

g

��

B

C

; I = •a1 •a2 •a3

(b1,b1,b2) //

��

•b1•b2

•c1

Gr(I) is also known as the category of elements of I :

•a1

,,

��::::
•a2

��

++•a3

������
33•b1 •b2

•c1

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 53 / 58

The interoperability of categories The Grothendieck construction

Grothendieck construction applied to database instances

Suppose given the following instance, considered as I : C → Set

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr’y
q10 Sales 101
x02 Production 102

C =

m; d ' d s; d ' idD

•E
d //

m

��

f

��
l

��

•D
s

oo

n

wwooooooooooooo

•S

Here is Gr(I), the category of elements of I :

Gr(I) =

•101

f

��

l

//

m

99

d

**
•102 •103 •q10 •x02

s

cc

n

ww

. . . •Alan •Alao . . .

. . . •Bertranc •Bertrand . . .

•David . . . •Hilbert •Production

•Russell •Sales •Turing . . .

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 54 / 58

The interoperability of categories A different perspective on data

A different perspective on data

In fact, the Grothendieck construction of I : C → Set always yields not
only a category Gr(I) but a functor

π : Gr(I)→ C.
Gr(I):=

•101

f

��

l

//

m

99

d

**
•102 •103 •q10 •x02

s

cc

n

ww

. . . •Alan •Alao . . .

. . . •Bertranc •Bertrand . . .

•David . . . •Hilbert •Production

•Russell •Sales •Turing . . .

π−−−−→

C :=

m; d ' d s; d ' idD

•E
d //

m

��

f

��

l

��

•D
s

oo

n

~~|||||||||||

•S

The fiber over (inverse image of) every object X ∈ C is a set of objects
π−1(X) ⊆ Gr(I). That set is I (X).

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 55 / 58

The interoperability of categories OWL schema and RDF data

OWL schema and RDF data

Gr(I)=

•101

f

��

l

//

m

99

d

**
•102 •103 •q10 •x02

s

cc

n

ww

. . . •Alan •Alao . . .

. . . •Bertranc •Bertrand . . .

•David . . . •Hilbert •Production

•Russell •Sales •Turing . . .

π−−−−→

C =

m; d ' d s; d ' idD

•E
d //

m

��

f

��

l

��

•D
s

oo

n

~~|||||||||||

•S

The relation to RDF triples is clear: each arrow f : x → y in Gr(I) is
a triple with subject x , predicate f , and object y .

For example (101 department q10), (x02 name Production), etc..

C is an OWL schema and Gr(I) is an RDF triple store.

SPARQL queries (graph patterns) are easily expressible in this model.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 56 / 58

The interoperability of categories OWL schema and RDF data

Summary

There’s a well-known connection between relational databases and
RDF.

This connection is born out in a most natural way with category
theory.

The model gracefully extends – what should work works.

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 57 / 58

Conclusion Summary of the talk

Summary of the talk

I hope the connection between databases and categories is clear.

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr
q10 Sales 101
x02 Production 102

C=

m; d ' d s; d ' idD

•E
d //

m

��

f

������
l

��7777 •D
s

oo
n��

•S1 •S2 •S3

Queries are a form of data migration; a unified approach.

Category theory allows us to change perspectives on information.
Without a good theory of how different perspectives interoperate,
there’s endless dupication of effort.
Math can help information management evolve to handle 21st century
challenges.

Thanks for the invitation to speak!

David I. Spivak (MIT) Categorical databases Presented on 2017/03/29 58 / 58

	Introduction
	Purpose of the talk
	Databases as languages
	Category theory for managing change of form
	The pros and cons of relational databases
	What is category theory?
	The basic similarity between databases and categories
	The category of categories
	Rest of the talk

	``Databases are categories"
	First some math
	What does equivalence of paths mean?
	Examples of categories
	Functors to Set
	How we're thinking of databases
	What is a database?
	Foreign Keys and business rules
	Database schema as a category
	Schema=Category, Instance=Set-valued functor

	Functorial schema mapping and data migration
	Changes
	Changes in schema
	Changes in data
	Data migration
	The ``easy" migration functor,
	The ``adjoint" migration functors, and
	Views
	FQL, a functorial query language
	Summary of functorial data migration

	The interoperability of categories
	How's the time?
	Connection to Programming Languages
	Structured vs. unstructured data
	The Grothendieck construction
	A different perspective on data
	OWL schema and RDF data

	Conclusion
	Summary of the talk

