
Using Category Theory to facilitate multiple manufacturing service
database integration

Ryan Wisnesky, Spencer Breiner, Albert Jones, David I. Spivak, Eswaran
Subrahmanian

Ryan Wisnesky
Categorical Informatics
Cambridge, MA, USA
Email: ryan@catinf.com

Spencer Breiner
Software and Systems Division
Information Technology Laboratory
National Institute of Standards and Technology(NIST)
Gaithersburg, MD, USA
Email: spencer.breiner@nist.gov

Albert Jones
Systems Integration Division
Engineering Laboratory
National Institute of Standards and Technology(NIST)
Gaithersburg, MD, USA
Email:albert.jones@nist.gov

David I. Spivak
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Ave.
Cambridge, MA 02139
Email:dspivak@mit.edu

Eswaran Subrahmanian
Institute for Complex Engineered Systems and Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, PA 15213
sub@cmu.edu

Corresponding Author: Eswaran Subrahmanian, Software and Systems Division,

National institute of Standards and Technology, Mail Stop 8970, 100 Bureau Drive,

Gaithersburg, MD, USA, Email: sub@cmu.edu

.

Using Category Theory to facilitate multiple manufacturing service portal
integration

Abstract

The goal of this paper is to illustrate the use of category theory as a basis
for the integration of supply chain databases. We begin by discussing
existing work on using OWL ontologies to integrate supply chain
databases. In this paper we use as our reference prior work by
Kolvatunyu et.al (2013) on the use of OWL-based semantic web tools to
study the integration of different manufacturing service capability (MSC)
databases using a generic-model approach that they propose in their
paper. We approach the same task using a different set of tools,
specifically category theory and FQL, a functorial query language based
on categorical mathematics. This work demonstrates the potential utility
of category-theoretic information management tools, and illustrates some
advantages of categorical techniques for the integration and evolution of
databases. We conclude by making the case that category theoretical
approach can provide a more flexible and robust approach to integration
of existing and evolving information

Keywords: manufacturing supplier database, Category theory, ontology, semantic

mediation, categorical informatics, information integration

1. Introduction

Historically, the suppliers of certain types of manufactured goods and services could be

discovered in paper-based catalogues and registers. The advent of the internet changed

the possibilities of discovering suppliers through broader, online, market mechanisms

(Finger et.al, 1996). Today, a number of e-market portals promoting similar services

have emerged. These portals provide an obvious advantage over earlier discovery

mechanisms by enabling quick and easy access to suppliers using information contained

in a variety of databases.

However, this advantage has been partially offset by the increasing difficulties

in searching for specific manufacturing services across a plurality of databases. Such

difficulties are exacerbated by the fact that most of these portals have their own

proprietary database formats. This fact makes it difficult to merge these different

databases into a single, accurate and consistent set of information. A further difficulty

arises because each database has at least three different types of schemas – physical,

logical, and external; and these types can vary across multiple databases. In addition,

there can be classification types that include text entries, process descriptions, part

catalogues, and equipment lists.

With such a broad range of classification types and database schemas used in

supplier databases, finding a supplier with just the right capabilities to meet OEM

requirements can be difficult. The technical genesis of this difficulty stems from the

need to integrate information across the disparate classification types and their

corresponding databases. Early efforts to address these integration problems were quite

general and usually lacked sufficiently expressive semantics. As a result, they often

omitted key information originally presented by the service providers, thereby failing to

identify services precisely enough for matching them against OEM requirements.

2. The semantic mediation approaches

Recently, semantic-mediation techniques, based on ontologies, have been used to

address this problem. The need for semantic mediation between different database

schemas can arise 1) when requirements are based on one classification scheme but

capabilities are based on another or 2) when there is a lack of taxonomic and

hierarchical data regarding manufacturing services. In such cases, mediation approaches

can be based on OWL (Bechhoffer, 2009, OWL, 2015), a family of Web Ontology

Languages used to represent semantic knowledge. OWL is based on Description Logic

(Krötzsch, et.al, 2012), a fragment of first-order logic. OWL is closely associated with a

number of other web technologies including RDF, SWRL, and SPARQL. The

Resource Description Framework (RDF) (RDF, 2013) is often used for data

specification. Semantic Web Rule Language (SWRL) (Horrocks et al., 2004) is used for

handling algebraic equations. And, the SPARQL Protocol and RDF Query Language

(SPARQL) (Perez, et al., 2009) is used for querying and reasoning about ontologies.

Figure 1 goes here

3. Applying ontologies to the supply chain problem

As described by Kulvatunyou et.al in (2013), there are two ontological approaches to

solving our supply chain problem: the generic-models approach and the reference-

model approach. In both approaches, services and capabilities are classified using a

variety of taxonomies, ranging from the materials involved in a process to the

equipment used in that process. In some cases, these classifications involve substantial

domain knowledge based in the particular industry of the service provider, such as

aerospace or automotive. The generic-models approach translates each database into an

ontology and maps these ontologies into one another. The reference-model approach

constructs a common reference ontology, and develops mappings from each database

ontology into this common one.

3.1 The Generic-model approach

Kulvatunyou et.al (2013) used a generic-model approach to develop models of

manufacturing services and capabilities, as shown in Figure 1. In that same paper, the

authors applied some of the aforementioned OWL-based semantic web tools to study

the integration of different manufacturing service capability (MSC) databases using the

generic-model approach. The authors also discuss the advantages and disadvantages of

this approach. Of particular concern is that this approach requires the construction of 1-

to-1 mappings between pairs of ontologies, and the number of such pairs scales

quadratically with the number of databases; this is a problem if we hope to scale this

approach to a large number of service providers. This issue can be mitigated, to some

extent, by defining a few “atomic” mappings and constructing the rest by chaining them

together, or by using the reference-model approach discussed below. A more

significant obstacle arises when a database contains some unique information. That is,

whenever provider A specifies some class of information unknown to provider B, there

can be no 1-to-1 mapping of A’s ontology into B’s ontology. Worse, if every such

provider specifies some unique type of data, there will be no 1-to-1 mappings at all!

3.2 The Reference-model approach

The reference approach addresses the problems with the generic-model approach by

constructing a single over-arching reference ontology. One only needs to create a single

mapping for each provider, locating the provider’s ontology inside the reference

ontology. Furthermore, by providing sufficient detail in the reference ontology, one can

ensure that it accepts 1-to-1 mappings from each provider’s ontology. However, the

construction of the reference ontology itself is laborious and requires much more

encoding of information than the generic model approach. But there is a long-term

advantage to the reference ontology approach: adding a new portal requires only the

mapping of the new portal ontology into the reference ontology. Of course, this

advantage is contingent on the reference ontology being rich enough to accept the new

portal; if it is not, then the reference ontology will also need to be updated to

accommodate the new portal. Nonetheless, the reference-ontology approach is more

useful for long-term maintenance. Additionally, it provides the flexibility needed to add

new relationships in a centralized location rather than updating the mappings between

individual ontologies.

Figure 2 Goes here

A second paper, Kulvatunyou, et al. (2014), forms the basis for our work. In this

paper, the authors take two proprietary portals (called “A” and “B”) and integrate them

using the reference ontology model illustrated in Figure 2. This integration enhances the

ability to provide information about a manufacturing supplier by drawing on

information contained in portal B to answer a query regarding entities from portal A.

The authors begin with a relational database schema for each portal. Each schema is

translated to an RDF model, which in turn is translated to an OWL model. Both are then

embedded in a generalized “Upper Ontology” for manufacturing services developed by

Ameri and Dutta (2006) using the Manufacturing Service Description Language

(MSDL). The language and semantics of the reference ontology are independent of the

two portal ontologies, rich enough to interpret them both, and, together, they serve as an

interlingua between them. After mapping each of the portal ontologies into the reference

ontology, the authors resolve linguistic differences between the two by mapping to

terms encoded in the reference ontology.

Once this integration is accomplished, the result of a query to the integrated data

will incorporate the data contained in both portals. Formally, the initial query is

translated into two different queries, expressed in the syntax of the portals A and B.

These are each instantiated in their respective OWL ontologies, which support the

necessary reasoning about the two queries independently. The reference ontology then

mediates and composes the individual results and returns them to the user. In effect, this

approach provides the user with an integrated system containing enhanced information

on each of the suppliers.

4. Limitations of ontology-based approaches

Because of their success in certain well-understood domains like manufacturing,

ontologies have been quite popular. Nevertheless, ontology-based approaches to

information integration have three major limitations. The first limitation is that

expressing a domain-specific ontology using formal logic can be cumbersome and

subject to numerous errors. This is especially true if the statements in the ontology form

a single, monolithic structure in the domain’s universe of discourse. The second

limitation involves the construction of ontologies, which is a manual, time-consuming

process. In particular, constructing an ontology becomes quite complicated when one

must represent a large number of concepts and relationships. The third limitation

involves using ontologies to facilitate information integration. A given domain may

have several ontologies, each in some ways incomplete and/or ambiguous; moreover,

these may be written in different ontology languages which implement different logical

systems. It follows, then, that the ontology approach to information integration may

require merging schemas, ontologies, languages and even logics (Goguen, 2004). This

is the only way to ensure that semantics are respected throughout the entire “integration

chain,” from actual datasets and documents, through schemas and ontologies, all the

way to logical frameworks.

One avenue to address such difficulties involves the creation of small, modular

ontologies which can be combined as necessary to model particular domains. While a

good idea in principle, significant problems arise in practice when the designer or user

attempts to merge such ontological modules. One problem is the lack of a formal theory

to provide a conceptual foundation for such integration. Another problem is the

difficulty associated with extending and merging ontologies automatically and correctly

(Sowa, 2001, Perdiou et al., 2003). There are interactive tools for ontology merging and

mapping, such as PROMPT, a component of the Description Logic-based tool Protégé

(Noy and Musen, 2003). An evaluation of PROMPT has shown that there are

limitations with respect to resolving schema-level conflicts (Kulvatunyou, 2011). As

noted above, modularity can help, but only so far. The best alternative for reducing the

complexity, time and number of errors involved in ontology construction would be a

tool for automatic ontology creation. Indeed, some mechanisms have already been

proposed and implemented for this task; for example, there are good tools for

automatically creating noun-based classes. However, these usually fail to identify all

relevant relationships between these classes.

In this paper, we address the same supplier database integration problems described

above using a new approach to ontologies called “ologs” (Spivak and Kent, 2011).

Ologs are a structured graphical representation of information based on a branch of

mathematics called category theory, a discipline that studies structural properties

independent from particular details of implementation. One of the major benefits of this

new approach is that it eliminates the aforementioned problems.

5. What is Category Theory?

In the early 1940s, mathematicians began studying the subtle relationships and

connections between different branches of mathematics. Many of the branches emerged

from the set-theoretic revolution at the beginning of the 20th century, each with its own

assumptions and terminology. While studying the relationship between two very

different mathematical disciplines, concerned with geometric spaces on one hand and

algebraic methods on the other, Saunders Mac Lane and Samuel Eilenberg discovered

that they required a new language to describe their conclusions. That language is called

category theory (CT) (Eilenberg & Mac Lane, 1945). Category theory enabled them to

capture the relationships between these disciplines by focusing not on the objects of

study themselves (spaces and algebras), which are very different, but rather on the

relationships (“arrows”) between those objects. The basis of these inter-object

relationships is the structure-preserving function, which appears in both disciplines.

 In general, the notion of a category is an abstraction of this idea of structure and

structure-preservation. Categories can be compared using categorical constructions

called functors, which translate the objects and relationships of one category into those

of another. They do so in a precise way, preserving the integrity of these structure-

preserving relationships. One can regard CT as the mathematical study of pure

structure, in particular how to represent and compose such structure. As such, it can be

useful in modeling the declarative semantics of a system, which are often distributed

over many components organized into layers. The components of ‘‘lower’’ layers have

very simple semantics, perhaps expressing first principles; higher layers are constructed

as compositions of these lower-layer components. The latter may be supplemented with

more complex semantics that have no analogue at the lower level, meaning that a higher

layer can be more than the sum of its lower layers.

The most familiar example of a category is Sets, where the objects are sets,

arrows are functions, and composition (“o”) is defined by the familiar formula (g o f)(a)

= g(f(a)). Other examples include the category of vector spaces with linear maps and the

category of geometric spaces with continuous functions. One should regard an object in

a category as a type of data, and an arrow as a process which converts one type of data

into another. Composition determines the processes which arise from feeding the output

of one process as the input of another.

5.1 Category Theory, formally

Formally, a category C contains two types of entities: objects and arrows. Objects are

usually denoted with capital letters A,B,C,… while arrows use lowercase f,g,h, …. By

definition, every arrow maps out of one object (its domain) and into another (its

codomain); we represent this information by writing f:A→B. Most importantly,

whenever two arrows match “tip-to-tail” C must provide a method for composing them,

as in the diagram below:

The composition g∘f is read “g after f”. The rules of categories require that composition

is associative, meaning that if three arrows occur tip-to-tail, then triple composition

h∘g∘f is the same no matter which order it is composed; i.e., there is no need to specify

whether g and f are composed before h or vice versa. The final law of categories is that

every object A has an identity arrow 1_A:A→A, which one might conceive of as a

process which does nothing. The use of identity arrows will become clear below.

This definition of category is abstract (i.e., axiomatic). The advantage of this abstraction

is its flexibility; nearly all structured information can be represented as a category, so

many category-theoretic constructions and theorems will automatically apply to a wide

range of examples. This points to a second advantage of categories: the language of

objects and arrows is sufficiently expressive to define and study an impressive range of

phenomena. We discuss a few examples below.

5.2 Isomorphism

One of the most fundamental notions in category theory is that of an

isomorphism (or iso). An arrow f:A→B is invertible if there is another arrow

g:A→B which composes with f to the identity: an isomorphism is an arrow which

has an inverse, and two objects are isomorphic if there is some isomorphism which

maps one to another. In Sets the isomorphisms are bijective functions, and two

objects are isomorphic, written A≅B, exactly when they have the same number of

elements.

Even before the development of CT, mathematicians were aware that any useful

mathematical statement that applies to one object also applies to any isomorphic

object—indeed this property should define the notion of isomorphism: if two objects are

isomorphic, they should be indistinguishable. As an example, consider the disjoint

union A+B of two sets A and B. This is similar to the ordinary union of sets except that,

if A and B share some objects, each of these appears twice inside A+B. To define the

disjoint union in set theory one typically chooses two distinct tokens * and † and defines

A+B as the set of pairs:

{	(𝑎,∗)	|	𝑎 ∈ 𝐴	} ∪ {	(𝑏, †)	|	𝑏 ∈ 𝐵	}

The fact that * ≠ † ensures that shared objects in A and B are not identified in
the disjoint union.

However, the above definition of disjoint union is somewhat arbitrary: we could

have picked two different tokens, say ⋆ and ‡, and used these to define an alternative

disjoint union A+^' B. Although the two notions of disjoint union are not exactly the

same, they yield isomorphic results (namely, via the bijection that sends (𝑎,∗) ↦ (𝑎,⋆)

and (𝑏, †) ↦ (𝑏, ‡)). Indeed, any two definitions of the disjoint union must yield

isomorphic results, because the results must all have the same cardinality |𝐴| + |𝐵|..

The key insight is that disjoint union is a structural notion and, indeed, one can define

disjoint union using nothing but the language of objects and arrows. When defined

using category theory, it is a theorem that all constructions that define a disjoint union

will yield isomorphic results, and it follows that disjoint unions must be invariant under

isomorphism: if 𝐴 ≅ 𝐴′ and 𝐵 ≅ 𝐵′ then 𝐴 + 𝐵 ≅ 𝐴7 + 𝐵′. For more details, see

Chapter 3 of (Spivak, 2014).

Now consider the ordinary set-theoretic union. This is not invariant under

isomorphism, as in the following example, where 𝐴 ≅ 𝐴′and 𝐵 ≅ 𝐵′but 𝐴 ∪ 𝐵 ≇ 𝐴7 ∪

𝐵′.

𝐴 = {𝑎:, 𝑎;, 𝑎<} ≅ {𝑎=, 𝑎>, 𝑐} = 𝐴′

𝐵 = {𝑏:, 𝑏;} ≅ {𝑏<, 𝑐} = 𝐵′

𝐴 ∪ 𝐵 = 	 {𝑎:, 𝑎;, 𝑎<, 𝑏:, 𝑏;} ≇ {𝑎=, 𝑎>, 𝑏<, 𝑐} = 𝐴7 ∪ 𝐵′

Does this indicate that union is not a structural construction? Not exactly. From a

category-theoretic perspective, set-theoretic union smuggles in some structural

information without explicitly declaring it, as we will see in the next section.

5.3 A Category-theoretic notion of union

One categorical definition of the usual notion of union is called a pushout. The pushout

of two sets A and B is always computed relative to a specified overlap, O; the pushout

is written A+_O B and O is the missing structural information in the naïve set-theoretic

union. Consider the diagrams below, corresponding to the example in the previous

section. Although their top rows are isomorphic, the overlaps are not; thus, once we

explicitly include the overlap in our specification, these situations are no longer

structurally identical.

More generally, the pushout of two objects A and B is computed relative to a third

object O, the overlap, and two arrows O→A and O→B which locate the overlap inside

these objects. The pushout (i.e., the union) then forms the following diagram:

The two upper maps locate A and B within the pushout, and the diagram commutes,

meaning that the copies of O inside A and the copy of O inside B have the same

location inside 𝐴+@𝐵.

Although we have focused here on constructions in Sets, it is important to remember

that the structural definition of pushouts make sense in any category. Of particular

importance in the rest of the paper is that we can interpret pushouts as operations on

categories themselves.

5.4 More on functors

Because categories are mathematical objects they have their own notion of a

structure-preserving function called a functor. A functor 𝐹: 𝑪 → 𝑫 sends objects

of 𝑪 to objects of 𝑫 and arrows of 𝑪 to arrows of 𝑫, in such a way as to preserve

domain and codomain, composition and identities. More explicitly, if 𝑔: 𝐴 → 𝐵

is an arrow in 𝑪, then 𝐹(𝑔):	𝐹(𝐴) → 𝐹(𝐵) is an arrow in 𝑫. This means that

composable arrows in 𝑪 map to composable arrows in 𝑫, and functors respect

composition, as show in this diagram:

6. Ologs

Category theory provides a formal language to precisely specify aspects of systems that

might usually be expressed in natural language or in ad hoc diagrams, enabling a formal

understanding of a system’s functionality, its components, or its computational

behavior, for example. Ontology logs, or ologs, are a method for presenting a category

in a human-readable format and, at the same time, specifying its intended semantics.

Developed by Spivak and Kent (2010), an olog is a category in which the objects and

arrows have been labeled by English-language phrases that indicate their intended

meaning. The objects, which represent types of things, are labeled by noun phrases

while the arrows, which represent functional relationships (also known as aspects,

attributes, or observables), are labelled by verb phrases. In addition, “path equivalences”

express facts about how these functional relationships interact.

Individual concepts and connections within one olog can be “functorially

aligned” with concepts and connections in another. A functor creates a precise analogy

between, for example, the work of one author to the work of another so that the precise

nature of the comparison is explicitly specified rather than left to the reader’s

imagination. The ability to incorporate mathematical precision into the sharing of ideas

is a central feature of ologs. The additional expressivity of ologs, relative to other

graphical methods, provides semantic clarity and interoperability which cannot be

achieved with graphs and networks. An additional advantage arises from the use of

functors, which allow us to connect different ologs in a meaningful way, enabling

sharing and “data fusion.”

As explained in (Spivak & Kent), an olog is similar to a relational database

schema and in fact, an olog can literally serve as a database schema if desired. The main

advantages of creating an olog rather than writing a prose description of a subject are

that:

• an olog gives a precise formulation of a conceptual worldview,

• an olog can be formulaically converted into a database schema,

• an olog can be extended as new information is obtained,

• an olog written by one author can be easily and precisely referenced by others,

• an olog can be input into a computer and “meaningfully stored”, and

• different ologs can be compared by functors, which generate automatic

• translation systems.

Our vision of the future of data integration is one of many researchers building

(relatively) small ologs associated with the type of work they do. When another

researcher wants to use such a model (e.g., to exchange data), he or she would find the

associated category and develop a functorial connection between that category and his

or her own work. For example, (Spivak et.al, 2011) develops a formal relationship

between a hierarchical protein material and a simple social network. In (Williamson et

al., 2001) the authors apply category theory to formalize the underlying structure of

knowledge embodied in certain industrial computation systems. Their goal was twofold:

to produce software from a formalized knowledge representation that expresses its

intended semantics, and to unify knowledge-based systems developed by many different

organizations and written in a variety of languages. These examples show the extent to

which category theory enables the elucidation of precise analogies between very

different disciplines.

From a design perspective, one major benefit of ologs is that they bridge the gap

between human readability and computer readability. Another benefit is that they give

humans the ability to record ideas in a precise way without being experts in a computer

language, while resting on a solid mathematical foundation. Ologs allows the

incremental development of, and analysis of, ontologies by basing them in an

interconnected hierarchy of theories. Category theory supplies operations on the

hierarchy (e.g., pushout) which expresses the formation of complex theories from

simple ones. Additional operations, not discussed here, correspond to the abstraction of

shared concepts in an array of theories.

7. The olog Approach to manufacturing service portals integration

In section 2 we presented an integration problem involving overlapping portals for

manufacturing service capabilities (MSC), and discussed previous work addressing this

problem using OWL ontologies. Here we consider the same problem from a category-

theoretic perspective, using ologs. In place of OWL we use the Functorial Query

Language (FQL), a query language with underlying categorical foundations. The open-

source FQL project can be found at http://categoricaldata.net, or see (Wisnesky and

Spivak, 2014) for details.

As with the OWL approach, there are several strategies to achieve the desired

information integration. The particular strategy we use in this paper is as follows:

• Translate each portal schema into a category in FQL.

• Identify the overlap between portals, represented as a diagram of categories.

• Construct a new category via pushouts, representing a unified ontology for both

portals.

• Transfer existing data to the unified category via a “Kan extension.”

• Query the unified category using FQL, or translate data back into a relational

database.

For expediency we primarily focus on the expansion of portal A’s data by a collection

of synonym and hierarchy data about materials contained in an OWL ontology. This

demonstrates the way that categories can provide a lingua franca for comparing and

assimilating knowledge represented in different formalisms. The same methods apply to

other integration problems, and we will discuss some considerations for other

integration problems inline.

7.1 Importing relational and ontological data

As discussed in the previous section, an olog (i.e., a category) can be treated as a

relational schema (specifically, a SQL schema), and FQL provides canonical

translations from ologs to SQL schemas and vice-versa. Initially, portal A’s data is

presented as a relational (SQL) schema. Every table consists of an ID column (i.e., a

primary key), a set of attribute columns containing strings or integers, and a set of

foreign key columns that contain IDs from other tables. As discussed in (Spivak, 2014)

this SQL schema can be regarded as the presentation of a category. The objects of this

category are the tables of the schema, as well as the basic datatypes INT and STRING.

Each column of a table corresponds to an arrow out of the table; foreign keys represent

maps between tables while data columns correspond to maps into the objects INT and

STRING. Call the resulting category PORT_A. An instance of the schema can then be

represented as a functor 𝐼: 𝑃𝑂𝑅𝑇M → 𝐒𝐞𝐭𝐬. Each object (i.e., table) corresponds to a set,

specifically its set of rows. A datatype like INT maps to the actual set of integers. If we

choose a column in the table and look at the value in a particular row, this determines a

function. For example, foreign keys map rows in one table to rows in another. This is

enough to fully determine the functor I.

 FQL imports the SQL code defining a schema and an instance and translates

them into corresponding code defining an FQL schema and instance. The original

schema for Portal A, as visualized in Microsoft Access, is shown in Figure 3, and the

translation of the data into FQL is shown in Figure 4.

Figure 3 and Figure 4 go here.

The ontology about synonyms and hierarchy information for materials, which

we will call M, is written in OWL, and it was challenging to express in FQL because of

the absence of translation tools between OWL and FQL. In the end, we reconstructed

(part of) the ontology in FQL by hand. However, this is merely a matter of

implementation: the interpretation of OWL in first-order logic (Krötzsch, et al., 2012),

and of first-order logic in CT (Lambek & Scott, 1986) shows that such a translation

could be automated.

Starting from the materials ontology developed by Ameri and Dutta (2009), the

hand-coding began by identifying a set O consisting of relevant words from the

ontology (e.g., “ferrous”) and a function 𝑝𝑎𝑟𝑒𝑛𝑡: 𝑂 → 𝑂 which specifies a hierarchy

among this vocabulary. For example, “metal” might be the parent of “copper”, and

“material” the parent of “metal.”

Next we calculated the reflexive and transitive closure of this function, defining

a relation 𝑖𝑠_𝑎 ⊆ 𝑂 × 𝑂. Thus “a metal is a metal” (reflexivity) and “copper is a

material” (transitivity). In this case, it was enough to compute the closure in three

transitive steps. Call the resulting category Ont_M. Figure 5 (next page) shows the

ontology and Figure 6 (next page) shows end result of the reflective and transitive

closure of the parent function.

Figure 5 and figure 6 go here

7.2 Identifying the overlap

Conceptually, this is the primary step in our integration. Some of the words from

portal A appear in the ontology while others do not. Some of the words that do not

appear are nonetheless synonymous with some words that do appear.

Let N denote the set of words from portal A and, as above, O the set of words

from the ontology. The overlap between them can be identified as a relation syn⊆N×O

specifying when a word from portal A is synonymous with a word in the ontology. This

set of pairs is the overlap between our two categories. Specifically, a set can be thought

of as a discrete category which has no functional relations (except identities). This

means that a functor out of a discrete category is completely determined by its effect on

objects. Thinking of syn in this way determines a diagram of categories and functors as

below:

Since each word n∈N appears as an object of Port_A and each word o∈O as an object

of Ont_M, the functors F and G are just the projection of each synonym pair (n,o) onto

its first and second component.

7.3 Pushing out

The next step is to construct the pushout of this diagram in the category of

categories. This operation has not yet been implemented in FQL, so this step had to be

constructed by hand. Fortunately, the simple structure of the overlap category syn made

this a relatively easy task. Intuitively, one glues together the two categories Port`and

Ontcby setting equal any pair of objects related by syn.

Ultimately, this determines a new relation is_a′ ⊆ 	N × N where “n: is an n;”

exactly when there is a string of synonyms (∼) and ontological relationships (⊆) like the

one below:

n: ∼ o: ⊆ o; ∼ n7 ∼ o< ⊆ o= ∼ n;.

The string above shows	n:		isj7 of		n;	because n:	is	a	synonym	of	 o:	 which is a

synonym of n7	which is a synonym of o< which is a subclass of

o=	which	is	a	synonym	n;.			Formally, this corresponds to the existence or non-

existence of certain maps in the integrated category.

In some ways, this step is analogous to the reference ontology approach

presented by Kulvatanyou, et al. (2013). Indeed, the pushout schema with its inclusion

maps from Port_A and Ont_M is a reference ontology; it tells us how the concepts from

the two domains interact. However, in contrast to the original reference approach, here

the reference ontology can be computed automatically rather than specifically authored.

Whereas the OWL approach necessitates the creation and maintenance of the entire

reference ontology, our approach only requires identifying the overlap between two

representations. Typically, this overlap will be much smaller than the entire reference

ontology, saving us a good deal of work.

7.4 Transferring data

Because a database instance can be regarded as a functor from the database

schema (represented as a category) into the category of sets and functions, a

construction called a “Kan extension”, written Σ, allows us to transport instances across

functors between schemas:

A full description of Kan extensions is beyond the scope of this paper, but see Chapter 7

of (Spivak, 2014) for details. Roughly speaking, the Σ-instance is constructed by first

populating the tables from portal A and then closing this data under the functional

relationships contained in the integrated schema; wherever data is missing, the instance

is filled in with null values called Skolem variables.

7.5 Querying the integrated schema

We now have a category (schema) which extends the original portal A schema

with additional information from the ontology. We also have an instance of this

extended schema, populated from portal A’s original data and the ontology. With these

pieces in place we can query the resulting instance using terminology contained in

either portal A or the ontology.

Even for queries involving only terminology from portal A, this new instance

contains additional information not included in the original data from portal A. For

example, the ontology contains information about many types of pre-hardened steel. A

query regarding possible jobs on a particular drill type (which only invokes terms from

portal A), may return jobs which involve these various steel types (see Figures 7 and 8).

Queries in FQL may be constructed in one of two ways. The first is via Kan

extension, the same method used for transferring data, described above. Although this is

a fully general method for specifying queries, the determination of which functors to

extend along is often nontrivial. For this reason, FQL also implements a

select/from/where (SFW) syntax analogous to the usual query mechanism for SQL.

Alternatively, one can take the integrated FQL schema/data and translate it back into a

relational database. This allows the application of all familiar database methods to study

our integrated data

Figure 7 and Figure 8 go here

7.6 Integrating Multiple Portals

Now consider the full integration problem, which also involves a second portal B.

Conceptually, the simplest way to integrate three or more models is to generalize from

pushouts to colimits. Colimits, which involve essentially the same mathematical

methods as pushouts, allow us to integrate models which fit together in more complex

diagrams than those above. In the present situation, we would take a colimit over the

following diagram, consisting of three schema categories and three overlap categories:

Although mathematically justified, this naïve approach suffers from some pragmatic

difficulties. Foremost among these is a scaling issue: we must identify the overlap

between every pair of representations. Because the number of pairs scales quadratically,

this means a lot of work when merging many representations. Equallydifficult, if we

wish to add in a new representation to an existing merged model, we would need to

specify its overlap with each of the original pieces.

Fortunately, we can get around these difficulties by building our integrated models in a

step-wise fashion. (This step-wise approach also works when building a reference

ontology using OWL; it is not specific to CT.) First pick two representations A and B,

identify their overlap O and push out to form A+_O B. Then take a third representation

M and identify its overlap O' with the integrated model A+_O B. This simultaneously

represents the overlap of A with M and the overlap of B with M. Now push out to form a

triple integration as in the diagram below:

Obviously this process can be iterated to integrate any number of models. The procedure

is linear in the number of models to be integrated; we need only identify one overlap for

each. Moreover, it is naturally evolutionary: extending the integrated model by a new

representation involves exactly the same process as the initial construction. Best of all,

theorems about colimits guarantee that this iterated construction is correct—it always

yields the same result as the naïve method above. We can even recover the partial

overlaps using a construction called “pullback” which is a formal “dual” of pushing out.

8. Advantages of the olog approach

Based on our investigations, there are several advantages of the categorical approach to

MSC integration, compared to the approach using OWL ontologies. The first advantage

is the close relationship between categorical models and database specifications; this

simplifies the use of categorical methods in real-world applications. In practice, this

advantage manifests as a unique direct translation between database schemas and

categories. In contrast, the translation from SQL to RDF to OWL may not be unique

(and it is not direct), a fact which causes headaches when trying to rigorously prove the

correctness of an integration algorithm. The close connection between categories and

databases also allows us to leverage highly optimized database machinery to analyze our

categorical models.

 A second advantage is the existence of rigorous formal tools for working

with these categorical representations. Pushouts yield an immediate definition for model

integration. Even though this involves less work than the OWL approach (identifying

overlap, rather than constructing an entire reference ontology), the results are more

concrete. Whereas the OWL approach submits queries to a particular portal and then

reconciles and mediates these queries through the reference ontology, we provide a

tailored reference schema which can be queried directly. Similarly, Kan extensions

allow us to automatically populate the integrated schema based on initial input data.

9. Conclusions

In this paper, we illustrated the use of category theory as an alternative approach to

integration of two manufacturing supplier databases by contrasting it with the approach

that uses a traditional ontology language, OWL. We also illustrated using our approach

of identifying overlaps using synonyms between a given a portal and an ontology and

using the push out operator to create a reference ontology. Further, by iteratively

applying this approach a the portals to be integrated, we avoid the problem of

quadratically increasing set of mappings that will be needed in other approaches. It also

saves us the problem of creating and maintaining an entire reference ontology by

allowing us just identify the overlap to evolve ontology incrementally. We have

illustrated the advantages of the categorical approach to semantic integration of diversity

of databases in the manufacturing service domain by contrasting with an OWL based

approach. Our claim is that this approach is generalizable to other domains where

integration of databases to provide services over the web.

 Information integration depends on the interactions between the objects of

study more than the internal workings of each individual object in isolation. Interaction

is about structure, and 20th century mathematics has shown that structure is best

understood through functional relationships. Therefore, to better understand integration,

we must study structure and function. Structure and function are precisely the domain of

category theory, which captures and describes the complex interdependencies between

functional structures. Category theory allows us to describe information exchange and

interdependency at the level of semantic meaning (process) rather than at the physical

level of packets and symbols (a la Shannon). These capabilities make category theory a

natural mathematical foundation for information integration.

 Categorical foundations can enable a significant improvement in the way

information is conceived, modeled and used. In particular, it allows for a diversity of

formalisms to co-exist in a common context. These formalisms can be used both within

and across disciplines, interfacing with data stores and interconnecting the programs and

systems that rely on them. Category theory should facilitate the development of more

open reasoning systems and the discovery of unexpected commonalities between

information structures across disciplines, as it has already done in physics, computer

science and mathematics. Finally, category theory can provide a precise formal

foundation for emerging approaches to cross-disciplinary science, cloud-based services,

systems engineering and cyber-physical and socio-technical systems.

 The flexibility and semantic expressivity of the categorical data model as

represented by ologs provides an opportunity for ologs to serve as a standard for data

model exchange. Irrespective of the underlying model of data such as relational schema,

first-order logic, or equational models, ologs may serve as a unifying model for

comprehension and exchange. We are currently experimenting with the use of olog-

based representations to manage data associated with the LAAMPS molecular dynamics

simulation platform. Our goal is to connect various molecular dynamics tools through

the construction of a unified underlying model, thereby capturing links among this data

and facilitating chaining these simulations together. Once this experiment is done, we

will evaluate the potential for using ologs as a standard for representing and exchanging

data across simulation packages.

 This type of interdisciplinary interaction is sorely needed in contemporary

science, where each discipline has its own jargon and methods. Domain-specificity is

useful because it allows the optimization of languages and tools to particular domain

needs, but it also prevents information transfer between domains. In the best case, this

leads to additional work (when the same results are developed independently in different

places); in the worst case, important connections may go undiscovered and unexploited.

The methods of category theory allow us to build bridges between these disciplines

without disturbing local conditions. This hints at a relevant and useful mathematical

foundation for the day-to-day business of engineers and scientists, where we turn tables

of data into explicit categorical models. Surfacing the underlying semantics of these

situations will expose them to easier sharing, reuse and unexpected analogies.

Acknowledgements

References
Ameri, F., and D. Dutta. 2006. “An Upper Ontology for Manufacturing Service

Description.” In Paper Presented at the ASME International Design
Engineering Technical Conferences & Computers and Information in
Engineering Conference, 10–13. Philadelphia: AIP Publishing.

Bechhofer, S. (2009). OWL: Web ontology language. In Encyclopedia of
Database Systems (pp. 2008-2009). Springer US

Eilenberg, S. & Mac Lane, S. (1945) General Theory of Natural Equivalences.
Transactions of the American Mathematical Society, 58:231-294.

Finger, Susan, M. Terk, E. Subrahamanian, Chris Kasabach, F. Prinz, Daniel P.
Siewiorek, Asim Smailagic, John Stivoric, and L. Weiss. "Rapid design
and manufacture of wearable computers." Communications of the ACM
39, no. 2 (1996): 63-70

Galison, P. (1997) Image and logic: A material culture of microphysics.
University of Chicago Press, 1997.

Gougen, J, Data, Schemas and ontology Integration, International conference on
Combined logic, 2004

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M.
(2004). SWRL: A semantic web rule language combining OWL and
RuleML. W3C Member submission, 21, 79

Kulvatunyou, B., Ivezic, N., & Lee, Y (2014): On enhancing communication of
the manufacturing service capability information using reference
ontology, International Journal of Computer Integrated Manufacturing,
Online April, 2014.

Kulvatunyou, B., Ivezic, N., Lee, Y & Junho Shin , An analysis of OWL-based
semantic mediation approaches to enhance manufacturing service
capability models, International Journal of Computer Integrated
Manufacturing, September 2013.

Krötzsch, M., Simancik, F., & Horrocks, I. (2012). A description logic primer.
arXiv preprint arXiv:1201.408

Lambek, J. & Scott, P. (1986). Introduction to Higher-Order Categorical Logic.
Cambridge University Press, Cambridge, UK.

Noy, N. F., & Musen, M. A. (2003). The PROMPT suite: interactive tools for
ontology merging and mapping. International Journal of Human-
Computer Studies, 59(6), 983-1024.

OWL, (2015), Ontology Web Language, http://www.w3.org/TR/owl-features/,
May 1st, 2003 (accessed May 23, 2015)

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and complexity of
SPARQL. ACM Transactions on Database Systems (TODS), 34(3), 16.

Predoiu, L., Feier, C., Scharffe, F., de Bruijn, J., Martin-Recuerda, F., Manov,
D., & Ehrig, M. (2005). D4. 2.2 State-of-the-art survey on Ontology
Merging and Aligning V2. EU-IST Integrated Project IST-2003-506826
SEKT

Resource Description Language, 2013, http://www.w3.org/RDF/. (accessed,
May 23rd, 2015)

Spivak and Wisnesky, (2014) Functorial Query Language Specification,
http://categoricaldata.net/fql/fql_def.pdf

Spivak D. and Kent, R. ,(2011) Olog: a categorical framework for knowledge
representation, PLOS, 2011.
http://math.mit.edu/~dspivak/informatics/olog.pdf

Figure Captions

Figure 1. Generic model of manufacturing services capability (Kulvatunyou,

et.al, 2013)

Figure 2. Reference ontology approach for integrating two MSC portals A and B

Figure 3. Schema for Portal A

Figure 4. Portal A data in FQL

Figure 5. Initial “IS_A” relationship from the ontology

Figure 6. Result of the “IS_A” relationship after transitive and reflexive closure

Figure 7. Query result on initial data displayed in FQL

Figure 8: Query result on enriched data displayed in FQL

Figure 1. Generic model of manufacturing services capability (Kulvatunyou,
et.al, 2013)

Figure 2. Reference ontology approach for integrating two MSC portals A and B.

Figure 3. Schema for Portal A

Figure 4. Portal A data in FQL

Figure 5. Initial “IS_A” relationship from the ontology

Figure 6. Result of the “IS_A” relationship after transitive and reflexive closure

Figure 7. Query result on initial data displayed in FQL

Figure 8: Query result on enriched data displayed in FQL

