
7 March 2017

1

Simple Aggregations in Algebraic Databases

Patrick Schultz, David I. Spivak, Ryan Wisnesky

Abstract

This document describes an extension to the Algebraic Databases formalism (Schultz & Wisnesky,
2017) that allows for simple aggregations in uber-flower queries.

1 Extending Multi-sorted Equational Logic

In this paper we define a syntax, semantics, and proof system that extends multi-sorted
equational logic. This system is used in the AQL tool to implement simple aggregations in
uber-flower queries.

1.1 Syntax

A signature Sig consists of:

1. A set Sorts whose elements are called sorts,
2. A set Symbols of pairs (f ,s1 × . . .× sk → s) with s1, . . . ,sk,s ∈ Sorts and no f

occurring in two distinct pairs. We write f : X instead of (f ,X) ∈ Symbols. When
k = 0, we may call f a constant symbol and write f : s instead of f :→ s. Otherwise,
we may call f a function symbol.

We assume we have some countably infinite set {v1,v2, . . .}, whose elements we call
variables and which are assumed to be distinct from any sort or symbol we ever consider.
A context Γ is defined as a finite set of variable-sort pairs, with no variable given more than
one sort:

Γ := {v1 : s1, . . . ,vk : sk}
We inductively define the set Termss(Sig,Γ) of terms of sort s over signature Sig and
context Γ as:

1. x ∈ Termss(Sig,Γ), if x : s ∈ Γ,
2. f (t1, . . . , tk) ∈ Termss(Sig,Γ), if f : s1 × . . .× sk → s and ti ∈ Termssi(Sig,Γ) for

i = 1, . . . ,k. When k = 0, we may write f for f ().
3. (f ,o){for Γ′ where t1 = t ′1, . . . , tk = t ′k return e} ∈ Termss(Sig,Γ) when Γ′ is a

context such that Γ∩Γ′ = /0 and f : s× s→ s and o : s and e ∈ Termss(Sig,Γ∪Γ′)

and for every 1≤ i≤ k there exists a sort si such that ti, t ′i ∈ Termssi(Sig,Γ∪Γ′).

Note that the monoid comprehensions (for Γ′-terms) are binding constructs: the vari-
ables in Γ′ are considered bound. (Capture-avoiding) substitution of a term t for a variable
v in a term e is written as e[v 7→ t] and is defined as usual.

7 March 2017

2

An equation over Sig is a formula ∀Γ. t1 = t2 : s with t1, t2 ∈ Termss(Sig,Γ); we will omit
the : s when doing so will not lead to confusion. A theory is a pair of a signature and a set
of equations over that signature. Associated with a theory T h is a binary relation between
terms, called provable equality. We write T h ` ∀Γ. t = t ′ : s to indicate that the theory
T h proves that terms t, t ′ ∈ Termss(Sig,Γ) are equal according to the usual rules of multi-
sorted equational logic extended with five monoid comprehension laws. The equational
logic rules are

t ∈ Termss(Sig,Γ)

T h ` ∀Γ. t = t : s

T h ` ∀Γ. t = t ′ : s

T h ` ∀Γ. t ′ = t : s

T h ` ∀Γ. t = t ′ : s T h ` ∀Γ. t ′ = t ′′ : s

T h ` ∀Γ. t = t ′′ : s

T h ` ∀Γ. t = t ′ : s v /∈ Γ

T h ` ∀Γ,v : s′. t = t ′ : s

T h ` ∀Γ,v : s. t = t ′ : s′ T h ` ∀Γ. e = e′ : s

T h ` ∀Γ. t[v 7→ e] = t ′[v 7→ e′] : s′

and the monoid rules are

T h ` ∀Γ. (f ,o){for − where − return e}= e

T h ` ∀Γ. (f ,o){for Γ
′ where φ return o}= o

T h ` ∀Γ. (f ,o){for Γ
′ where φ return f (e,e′)}= f

(
(f ,o){for Γ

′ where φ return e}, (f ,o){for Γ
′ where φ return e′}

)
T h ` ∀Γ. (f ,o){for Γ

′ where φ return (f ,o){for Γ
′′ where φ

′ return e}=
(f ,o){for Γ

′∪Γ
′′ where φ ∪φ return e}

T h ` h(o) = o′ T h ` ∀xy.h(f (x,y)) = f ′(h(x),h(y))

T h ` ∀Γ.h
(
(f ,o){for Γ

′ where φ return e}
)
=

(f ′,o′){for Γ
′ where φ return h(e)}

We say that a theory T h is OK for aggregation when, for every term in T h of the form

(f ,o){for Γ where t return e}

we have

T h`′ ∀xyz. f (x, f (y,z))= f (f (x,y),z) T h`′ ∀x. f (x,o)= x= f (o,x) T h`′ ∀xy. f (x,y)= f (y,x)

where T h `′ φ indicates that T h entails φ under the rules of multi-sorted equational logic
without use of the monoid laws. We only consider theories that are OK for aggregation.

1.2 Semantics

An algebra A over a signature Sig consists of:

• a set A(s) for each sort s; the elements of A(s) are called carriers, and

7 March 2017

3

• a function A(f) : A(s1)× . . .×A(sk)→ A(s) for each symbol f : s1× . . .sk→ s.

Let Γ := {x1 : s1, . . . ,xn : sn} be a context. An A-environment η for Γ associates each
variable xi with an element of A(si). Write JΓK to indicate the set of all A-environments for
Γ.

The meaning of a term t in Terms(Sig,Γ) relative to A-environment η for Γ is written
JtKη and recursively defined as:

JxKη = η(x) J f (t1, . . . , tn)Kη = A(f)(Jt1Kη , . . . ,JtiKη)

To extend the above definition to aggregations

J(f ,o){for Γ
′ where t1 = t ′1, . . . return e}Kη

first define the set

ζ := {η ′ | η ′ ∈ JΓ
′K ,Jt1Kη ∪η

′ = Jt ′1Kη ∪η
′, . . .}

and the meaning of the agg term is

• A(o) if ζ is empty,
• JeKη ′1∪η if ζ = {η ′1},
• A(f)(JeKη ′1∪η ,JeKη ′2∪η) if ζ = {η ′1,η ′2},
• etc

References

Patrick Shultz & Ryan Wisnesky Algebraic Data Integration.

7 March 2017

	Extending Multi-sorted Equational Logic
	Syntax
	Semantics

	References

