
I’m a Stanford PhD student working in Chemical Engineering. 
What I’m about to present has been written up in a paper with the same title here, 
and the goal of that paper was to outline how CQL could be useful in particular to
scientists like myself.
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So we’ll go over Algebraic databases and Functorial data migration in the context of 
some toy examples, 
and then talk about a bigger integration that I was able to accomplish using CQL,
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Let me describe the situation that led to an interest in categorical databases:
Data is the currency for scientific hypotheses and theories, and naturally we would 
like to be able to freely exchange it. However:
<1> <2> <3>
These problems are amplified for scientists over software engineers because basic 
scripting and data engineering tasks are even more challenging and error-prone.
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So our reality is that different research groups model the same world in very different 
ways. To make things concrete, I’ll share more about my field:

- We are interested in catalysis, in particular, we look at energy technology, such as a 
fuel cell which requires catalysis to most efficiently convert chemical energy into 
electric energy.
- Computational chemistry models the catalysts, which you can think of as flat 
surfaces with molecules impinging from above, in finite cells with atoms at particular 
points. We cannot directly model the entire process, but with a lot of computational 
resources we can learn a few things about a few snapshots of these tiny cells and use 
theoretical tools to infer things about how the the macroscopic process should 
operate.
- Some example questions we may want to ask, given these modeling tool
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So now we want to consider the real world, where there do exist databases that try 
to represent these types of models and their analyses.

We’ll approach it from the perspective of a researcher in this field who has their own 
picture of the world and wants to migrate in from one of these sources to augment 
their data.
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So suppose we want to model this domain. We could think of every one of our 
“simulation boxes” as a chemical species. And there are lots of things we can say 
about chemical species

However, there would be a lot of redundant, denormalized information here without 
distinguishing, say, the concept of water (H2O, boils at 100 oC, etc.) and a particular 
box with H1 at this coordinate, H2 and O at these other coordinates. This is actually a 
many-one relationship.

Likewise, we can recognize that some attributes are really only fitting for talking 
about surfaces, which are infinitely periodic in 2D, bulks, which are infinitely periodic 
in 3D, and molecules, which are not periodic at all. 
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So our conclusion of this analysis is that to talk about our simulation boxes, it would 
be better to have 6 categories.

There are certain properties of species and structures independent of 
bulk/surface/molecule, so we can collect those here with a subset many-one relation.

And we can include the many one relations of generalizing from a concrete structure 
to an abstract species too.

Up to this point, everything I said could have been about standard relational 
databases. When we view this as a schema for an algebraic database, nothing 
changes, yet we can add richer constraints to enforce the meaning of these objects 
and relations.
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Here I try to make these tables more concrete by giving examples what records in 
each table look like.
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For example, there are many categories of surfaces which are identified by a number, 
e.g. 111 or 110, and there are many categories of bulk materials depending on how 
atoms are packed, e.g. FCC or HCP. Now, if we have a concrete Cu-fcc-111 surface 
structure, that generalizes to the concept of Cu-fcc-111, which has the concept of Cu-
fcc underlying it. We want to enforce that we get the same result no matter which 
path we take.
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Likewise we have three constraints which say it doesn’t matter in which order you 
discard the information about whether you are bulk, etc. and the concrete structure 
information.

Just because I use the same string “generalizes to” or “Is a” does not tell the 
computer that these relationships ‘mean’ the same thing. That is something that I 
need to encode as path equalities if I want it to be machine-enforced.
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An interesting feature is the ability to not simply equate paths but to also integrate 
arbitrary functions from a programming language.

Assuming you have some routine which looks at the simulation box and the positions 
of the atoms and classifies it as bulk/surface/molecule, you could enforce that the 
data in your schema is consistent with this routine.

Now the *meaning* of “Bulk” as a table title is machine-enforced, rather than just a 
string that relies on human interpretation to use correctly.
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Now a new domain to model to ground discussion of the mapping between these 
algebraic databases:

We learned in high school that chemical reactions are things like “A and B combine 
together to form AB at some quantifiable rate”

If we know the set of reactions that are possible, we can construct a reaction network 
and compute things like the equilibrium/final rate of each reaction. So there is a 
subset relation from reaction (within some network) to the network. To make the 
schema more interesting, note that every reaction can be thought of as having a 
reverse reaction (note the constraint that rev.rev is identity) and there is a 
distinguished reaction in the set which is a “rate determining step”. 

The other two constraints say that the rds of a reaction network belongs to that 
reaction network, and the reverse of a reaction belongs to the same network. 

Here’s some example data with two different reaction networks, noting that 
sometimes the same reaction can appear in multiple networks.
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Now, consider an alternate model of the same system. Before, we were 
parameterizing reactions by which network they came from, but consider a scientist 
who only considers a particular network, such as water splitting reactions. They might 
be interested in data from the first schema but want to import it into their simpler 
schema. Suppose this data gets transferred:

This is a simple example, but there are a lot of things that can go wrong in general 
during data migration. This resulting database is in principle a possible result by 
migrating with SQL and Python scripting, but we can tell there is something wrong 
with it, even though the target schema has no data integrity constraints. This is 
because we can interpret the reverse of reverse being identity from the source 
schema in the target schema (this is functorial data migration respecting constraints 
in source and target). 

Conceptually, this is a really nice property to have for someone making their database 
public to outsiders without having to trust them as much to not accidentally misuse 
the data. 
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Now we can consider another limiting example, where our source schema is actually 
embedded into a larger schema, which not only parameterizes by reaction network 
but also by a particular numerical solver that computes properties of the reaction 
network. 

Specifying this requires us to map the objects and arrows, and again there are many 
possible mistakes that could be made in the new schema that we can forbid merely 
by interpreting the constraints from the source schema.
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So in general, the interface I want to expose to a scientist (which is also sufficient for 
CQL to correctly migrate data) are these points here.

Example of 2: SUNCAT has an attribute to declare which simulation software is being 
used, yet OQMD is entirely generated from a single software (therefore that info is 
nowhere in the database…rather to be found on the webpage). Need a way of 
injecting information as well as synthesizing new information from old.

Note that this is a very declarative interface.
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There are a lot of built in primitives in CQL that can do an entire migration in one 
step, but dealing with real, unclean data from the external world made this a multi-
step process.

There are also building blocks that let me customize a process for my exact needs 
which, given how many decisions I had to make, are probably not optimal for 
everyone.
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The first step involves interfacing with the external world to read in a MySQL 
database. 
This requires writing a query for each object in the resulting schema 
Note that CQL is particular about the datatypes and checks these upon landing the 
data. OQMD has some columns with inconsistent datatypes (e.g. mass here is 
coerced to always be float by adding a floating 0.0 to everything)

We’re loading data into a pseudoschema that has attributes instead of foreign keys 
and primary keys. We want to be able to load all the data before cleaning it.
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We then make this instance satisfy foreign key constraints, (by creating a new record 
where previously there was a null FK)

And primary key constraints. (by collapsing records with the same unique ID).

This is all stuff that is typically done under the hood in CQL (there is no need for a 
user to think about meaningless ID numbers) but in this special case I am working 
with IDs at a data level to repair the messy input data.
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This next step brings us to a more normal CQL schema, where there are real foreign 
keys and we no longer explicitly carry around VARCHAR uid attributes.  
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The final step to getting a clean source database is to recursively delete records which 
do not abide by path equalities or observation equations that we expect the source 
to have.
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The CQL query operation has a SELECT-FROM-WHERE syntax – but it’s a 
generalization of a SQL query, insofar as you can produce multiple, linked, tables at 
the same time.

In general, these two steps can be seen as the query disregarding information in the 
source which is not mappable to the target as well as deriving additional information 
which can be mapped to the target. This may not be enough to fully account for 
everything in the target, so it’s really an intermediate schema that gets populated 
with only the objects and attributes we know how to map into the target. Then the 
mapping process is straightforward from that into the target schema.
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In this example I create a brand new mapping table which says which elements (and 
how many) are in each chemical structure.
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The original messy source data may have unwanted duplicates, and some of the 
record generation in the query and in chasing the constraints is very conservative 
about freely generating records unless there is an explicit reason to collapse multiple 
records into one, so the final cleanup step is to quotient tables by the user-defined 
“identifying information”

E.g. Chemical elements differ from each other in hundreds of attributes, but what it 
MEANS for one to differ from another is to have a different atomic number.
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Lastly we have a simple command to reconnect everything that has been happening 
in the safe, algebraic database world back into the  real world.

Note we lose information (e.g. labeled nulls become SQL nulls) in this process. But 
now we have a pipeline which can operate as a black box for someone working with 
MySQL databases + has no knowledge of CQL internals.
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On a more concrete level, a large majority of specifying the migration process fell into 
one of these five categories, which I give details about in the paper. While there are 
some complicated things which don’t fall into these categories, such as the derivation 
of the mapping table that existed in the target schema but not the source, mostly it 
was one of these things which had straightforward approaches to addressing in CQL.
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So the net result, beyond the particular migration that was done, was really an 
interface that takes in these declarative inputs that try to be as intuitive as possible 
for a domain expert

And be able to leverage the theory underlying CQL to get for free a safe tool which 
can migrate and merge together multiple databases of interest.
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The overall CQL file for this process was thousands of lines long because there was so 
much detail to specify, but also there was a lot of redundancy that could be 
abstracted. Also making one change in the overall schema would require dozens of 
coordinated changes throughout the file, so mainly for refactoring I found it easy to 
work with a python wrapper that I wrote which has constructors corresponding to 
the basic CQL operations (like Migration, Schema, Query, Mapping, Java function, 
etc.). The generated file would be type checked by CQL and more or less always know 
if something went wrong in the code generation process.

This is the kind of thing I imagine would be needed for a scientist interfacing with 
CQL, but in general my experience was positive using it directly so I think this isn’t 
necessary for, say, a software engineer. 
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As a final thought, I wanted to share a more immediate use case for this technology. 
The one I had been talking about naturally relies on people benefiting from an entire 
community agreeing to using algebraic databases, and that kind of systemic change is 
really not something that happens on its own or easily. For this other use case, 
consider that sometimes the person who designed that database that doesn’t exactly 
match the one you want is in fact yourself, some time ago. 

We can compose the migration we wrote to our old database with our new migration 
in order to get OQMD into the new database.

True story: OQMD changed substantially since the start and end of undertaking this 
project (luckily older versions are still available). While we could write a new 
migration from new OQMD to our new SUNCAT database, the least amount of work 
would be to migrate new OQMD to old OQMD and then compose all three 
migrations.
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