
Slide 1

CQL: Databases Done Right

Peter Gates
Conexus.ai

9/10/2019 1Σ		 ⊣ 		Δ		 ⊣ 		Π
Σ ⊣ Δ ⊣ Π

CQL	Data	Modeling

Slide 2

Here is an outline of the talk. We start with some user stories and a value proposition for CQL. We then provide a basic introduction
to what CQL is and its conceptual and mathematical underpinnings.

The body of the talk will involve a series of dives into some of the core features of CQL with screen shots from working executable
files or CQL models. We will then wrap up with some conclusions regarding where we think CQL fits into the data and technology
landscape.

Outline
• CQL basics
• Computational foundation: The type side
•A unifying theme: Categories, enriched Graphs
•A brief overview of CQL constructions as they relate to

familiar relational constructions.
•Demo of a CQL model which takes you from a set of

related source databases, assembles them into a single
target database and then migrates that target.
• Schemas
• Instances
• Colimits
•Queries

•Conclusion

9/10/2019 CQL Data Modeling 2

Slide 3

These are user stories. For the remaining part of this talk we will conduct a technical survey of specific CQL features to provide some
grounding for these claims.

As a developer, CQL enables you to:

Evolve databases using composable schema and data
mappings.Evolve

Enrich the expressive power of database schemas and
data using path equations.Enrich

Integrate data using graphs of data mappings.Integrate

Benefit from improved data quality and reduced
development cost by catching errors earlier in the
development lifecycle.

Benefit

9/10/2019 3CQL Data Modeling

Slide 4

High assurance is achieved through the application of an imbedded theorem prover. This can be seen as intelligent assistance or IA.
The theorem prover is able to catch errors that violate the underlying mathematics.

Value Proposition

High Assurance
Data Migration and Data Integration:

Better
Cheaper

Faster

9/10/2019 CQL Data Modeling 4

Slide 5

Schemas and instances are first class objects in CQL. What does that mean?

Mappings between schemas and instances treat those constructions as an encapsulated whole. What defines that whole?

CQL Basics

•CQL manipulates schemas and instances and the
mappings between them.

•CQL schemas and instances are designed to be
related in a much more holistic way than other
database systems you may be familiar with.

9/10/2019 5CQL Data Modeling

Slide 6

The name CQL suggests some connection with the tried and true Structured Query Language. CQL stands for Categorical Query
Language. We will briefly discuss why later.

CQL syntax follows SQL syntax wherever possible and throughout the talk we will draw similarities between the two.

CQL Shares Much in Common With SQL

•The nomenclature and syntax of CQL is designed
to follow SQL whenever possible.

•A person familiar with SQL should be able to
learn how to use CQL quickly.

•Throughout the talk we will make comparisons
with SQL.

9/10/2019 CQL Data Modeling 6

Slide 7

Let me ask the question: Does the audience feel comfortable with the concept of a directed graph?

9/10/2019 7CQL Data Modeling

CQL is Based on the Mathematics of
Category Theory

•Category theory is unlikely to be familiar to most
of the audience so consider Graphs.

•For our purposes a Graph is a set of nodes
connected by directional edges or arrows.

•Categories are enriched Graphs.
•Categories are a very flexible way of thinking
about a set of related objects.

Slide 8

The type side is the foundation upon which all CQL constructions are based. You can roll your own type side from scratch if you
understand how to construct multi-sorted algebraic theories. Alternatively, for your convenience, you can just expose whatever Java
types and functions you would like to use in your database.

Better still: Next slide

Type Side

•The type side is a configurable foundation that
defines the set of types available for all other
CQL constructions.

• Java types and functions can be exposed in the
type side.

9/10/2019 8

Type Side

CQL Data Modeling

Slide 9

The CQL type side is analogous to the built in SQL types typical to other database systems. We will explore one important difference
involving the way null values are handled. CQL provides a database developer with a great deal of flexibility in defining the type side.
In the examples we explore we will restrict the type side to the string type.

By the way, without digging too far into the details, the string type is a simple example of an algebra. Because an algebra is a well-
defined mathematical concept, we can build other CQL constructions on the type side and apply an embedded automated theorem
prover to verify the correctness of CQL constructions.

Type Side:
Familiar Aspects
•An SQL type side is available that implements
SQL types in a nonstandard (but better!) way
due to differences in nulls.

•For simplicity, in the examples we discuss, we
will restrict the type side to the String type.

9/10/2019 9

Type Side

CQL Data Modeling

Slide 10

Notice there is something implied in this slide. Can anyone see what that is? I will give a hint. What is the connection between
schemas and graphs?

There is an additional column not mentioned here that you might expect based on your familiarity with relational databases.

Schemas:
Familiar Aspects

9/10/2019 10

Type Side

Schema

• A schema is a set of entities and two types
of columns:
• Attributes : Entities -> Types.
• Foreign keys : Entities -> Entities

CQL Data Modeling

Slide 11

A schema is seen by the imbedded theorem prover as an intact whole with a well-defined structure. Think of a schema as a graph
with some additional properties to include an identifier for each node and paths that can be used in equations.

Question: It is worth mentioning that you cannot equate any two paths. What might you want to require of a pair of paths for them
to be equated?

Schemas:
New Ideas

9/10/2019 11

Type Side

Schema

•Schemas are first class objects that define a
coherent structure with a well-defined
mathematical foundation.

•Columns can be thought of as outgoing arrows
and can be composed head to tail to define
paths.

•Paths can be equated to extend the expressive
power of a schema.

CQL Data Modeling

Slide 12

CQL instances share much in common with SQL data. One important difference is that CQL instances are graphs (categories) much
like RDF graphs.

Instances:
Familiar Aspects

9/10/2019 12

Schema

Instance

•An instance is the data that fills a schema.
•The schema underlying an instance imposes
rules / constraints on the instance.

•For each entity there is a set of generators that
“generate” the records of that entity.

CQL Data Modeling

Slide 13

CQL instances differ from SQL instances in that one can define equations. We will not explore this feature in this presentation. The
other difference is that null values are much more strongly typed than what you are used to with relational null values. A CQL null is
typed by both its generator (row identifier) as well as the column in which it appears.

So for example, if we had an attribute that documented a patient’s (say John Doe) body weight (column), the null value would be
typed by the generator associated with John Doe’s record and the body weight column. This would be interpreted as John Doe’s
unknown body weight.

The advantage of this is that labeled nulls can be used in equations like any other value. For example we might not know either John
Doe’s body weight or height, but we might know that if we take John Doe’s unknown weight in kg divided by his unknown height in
meters squared, that equation involving labeled nulls is equal to a BMI of 26.

Instances:
New Ideas

9/10/2019 13

Schema

Instance

•An instance is strictly typed by its schema.
•CQL “saturates” an instance with labeled nulls
based on the structure of the schema.

CQL Data Modeling

Slide 14

A CQL query constructs single entities in a way that is very similar to SQL. CQL differs in that the query construction has a separate
SQL like block for each entity in the target schema. These blocks are interrelated through variables that rang over generators of the
entities in the source schemas. Also each entity block includes a clause that constructs outgoing foreign keys of the target schema
from generators associated with source entities. These two features provide a mechanism for mapping a source schema to a target
schema that can be validated at compile time as preserving the data integrity of the source schema when mapped to the target
schema.

Queries:
Familiar Aspects

9/10/2019 14

Mapping

Query

Schema

Source

Target

•An CQL query behaves similarly to an SQL query
in the “simple” case where the target schema
has a single entity.

•Because CQL queries move an entire source
schema to a target schema they are functionally
equivalent to an ETL workflow.

CQL Data Modeling

Slide 15

CQL queries and mappings are related constructions that define ways of migrating data from one schema to another. Mappings are
roughly functional in that they are many to one. Queries extend mappings by being many to many mappings. So CQL mappings are to
CQL queries as functions are to relations.

The consequence of this is that CQL mappings and queries can be used to define graphs (categories) whose nodes are databases and
whose arrows are either mappings or queries. This defines an enterprise level picture of the data landscape.

A final point, we have now described schemas, instances and diagrams of related schemas as directed graphs each enriched with the
additional structure of a category. This means we have three layers with which describe databases all of which are “categorified” and
woven together into a mathematical rigorous tapestry.

Mappings and Queries:
New Ideas

9/10/2019 15

Mapping

Query

Schema

Source

Target

• CQL mappings are the mathematically obvious way to
construct graphs of schemas.

• CQL queries are generalizations of mappings that are closely
related to SQL queries.

• Mappings and queries can be composed to define paths.
• As such CQL schemas can be organized into graphs where

schemas are nodes and mappings and queries are edges.
• Such graphs can be used to define data integration strategies

and more generally model the enterprise landscape.

CQL Data Modeling

Slide 16

Row Maps:
That Which is Familiar

9/10/2019 16

Schema

Instance

Row Map
Source

Target

Æ

CQL Data Modeling

Slide 17

We will not discuss row maps in detail but mention them in passing as they are necessary to support the categorification of instance
data. As already mentioned, instances are individually categories that look a lot like RDF graphs where the nodes are data elements
and the arrows define how data elements are related.

One can also consider a category whose nodes/objects are each an instance of some schema. If instances of a schema define objects
what are the arrows that relate them. The answer is row maps. Row maps define the arrows between instances specific to a schema.

Row Maps:
Are New

9/10/2019 17

Schema

Instance

Row Map
Source

Target

• Given a schema, an CQL row map is a mapping from one
instance of that schema to another that preserves the
instance structure enforced by that schema.

• Like schema maps row maps can be composed to define
paths.

• As such the universe of instances of a particular schema can
be organized into graphs where instances are nodes and row
maps are edges.

• Such graphs can be used to integrate the universe of
instances associated with a schema.

CQL Data Modeling

Slide 18

But We Have Data In
Different Schemas!

9/10/2019 18CQL Data Modeling

Slide 19

Data Migration
Demo

9/10/2019 19

Mapping

Query

Schema

Instance

Row Map
Source

Target

Σ ⊣ Δ ⊣ Π

Eval

Source

Target

Source

Target

Bind

CQL Data Modeling

Slide 20

The diagram above is a schema level summary of the demo. The diagram includes the assembly of three source schemas into a single
schema using the colimit quotient construction. The colimit schema in turn is then transformed several times illustrating various
features of the query construction.

A Graph of Schemas

9/10/2019 CQL Data Modeling 20

Quotient
PM.Patient =

PA.Patient

Slide 21

This slide is an overview of some of the technical features that are used to create the various ways CQL migrates data from one
schema to another. The inset in the upper right-hand corner of the slide is a high-level picture of the CQL architecture.

9/10/2019 21

Mapping

Query

Schema

Instance

Row Map
Source

Target

Σ ⊣ Δ ⊣ Π

Eval

Source

Target

Source

Target

Bind

• Given a mapping from source schema to
target schema we can push (Σ,Π) a source
instance to a target instance or pull (Δ) a
target instance to a source instance
through the mapping.

• These three canonical ways to move data
are connected by row maps: Σ ⊣ Δ ⊣ Π

• Σ	– generalizes unions
• Δ – generalizes projections
• Π – generalizes joins

• Eval migrates data by first binding a query between a pair of
schemas (source, target) followed by an instance of the source
schema. Eval then returns an instance of the target schema.
Similarly for Σ ⊣ Δ ⊣ Π, except they bind mappings.

Data Migration

CQL Data Modeling

Slide 22

Architectural summary of CQL kinds.

CQL
Kinds

9/10/2019 22

Type Side Mapping

Query

Schema

Instance

Row Map

Source

Target

Σ ⊣ Δ ⊣ Π

Eval

Source

Target

Source

Target

Bind

CQL Data Modeling

Slide 23

Conclusion

• Graphs of the universe of database instances with their
maps between different databases are models of the
enterprise.
• CQL’s constructions from the type side foundation through

schemas, instances, schema maps, row maps and enterprise
maps provide a framework to bridge from business
requirements to computational implementation.
• CQL is an intelligent assistant to a data architect.

9/10/2019 CQL Data Modeling 23

Slide 24

Slide 25

Patient Medication Span

9/10/2019 CQL Data Modeling 25

PatientMed
PM_Dosage

Patient
PM_Patient_Name

Medication
PM_Med_Type

PM_Patient PM_Med

Slide 26

Patient Adverse Event Span

9/10/2019 CQL Data Modeling 26

PatientAE
PM_Date_Reported

Patient
PA_Patient_Name

AdvrsEvnt
PA_PT

PA_PatientPA_AE

Slide 27

PAM Causality

9/10/2019 CQL Data Modeling 27

Causality
Causal_Cat

PAM
AM_Med
AM_PT
Am_Ptnt_Name

Slide 28

Colimit
Schema

9/10/2019 CQL Data Modeling 28

PatientMed
PM_Dosage

Patient
PM_Patient_Name

Medication
PM_Med_Type

PM_Patient
PM_Med

PatientAE
PM_Date_Reported

AdvrsEvnt
PA_PT

PA_Patient PA_AE

Causality
Causal_Cat

PAM
AM_Med
AM_PT
Am_Ptnt_Name

AE_Causality

Slide 29

PAM
Normalized

9/10/2019 CQL Data Modeling 29

PatientMed
PM_Dosage

Patient
PM_Patient_Name

Medication
PM_Med_Type

PM_Patient

PM_Med

PatientAE
PM_Date_Reported

AdvrsEvnt
PA_PT

PA_Patient PA_AE

Causality
Causal_Cat

PAM
AM_Med
AM_PT
Am_Ptnt_Name

PM_PM PM_PA
AE_Causality

Slide 30

PAM DWH

9/10/2019 CQL Data Modeling 30

F_PatientMed
PM_Dosage

D_Patient
PM_Patient_Name

D_Medication
PM_Med_Type

PM_Patient
PM_Medication

F_PatientAE
PM_Date_Reported

D_AdverseEvent
PA_PT

PA_Patient PA_AdverseEvent

F_PAM
Causal_Cat

PAM_Medication PAM_AdverseEvent
PAM_Patient

Slide 31

PAM Report

9/10/2019 CQL Data Modeling 31

PAM_Rpt
Patient_Name
Causal_Cat
Medication
AE_Preferred_Term

PM_Rpt
Patient_Name
Dosage
Medication

PA_Rpt
Patient_Name
Date_Reported
AE_Preferred_Term

