
A Functorial Query Language

Ryan Wisnesky, David Spivak

Department of Mathematics
Massachusetts Institute of Technology

{wisnesky, dspivak}@math.mit.edu

Presented at Boston Haskell
April 16, 2014

Outline

§ Introduction to FQL.
§ FQL is a database query language based on category theory.
§ But, there will be no category theory in this talk.

§ How to program FQL using Haskell.
§ FQL provides an alternative semantics for Haskell programs.
§ If you can program Haskell, you can program FQL.

§ Demo of the FQL IDE.
§ Project webpage: categoricaldata.net/fql.html

2 / 30

Introduction to FQL

§ In FQL, a database schema is a special kind of entity-relationship
(ER) diagram.

Emp
‚

worksIn //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

Emp.manager.worksIn “ Emp.worksIn Dept.secretary.worksIn “ Dept

Emp

ID mgr works first last
101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name
q10 102 CS

x02 101 Math

3 / 30

Introduction to FQL

Emp
‚

worksIn //

manager

��
Dept
‚

secretary
oo

first
˝

last
˝

name
˝

Emp.manager.worksIn “ Emp.worksIn Dept.secretary.worksIn “ Dept

§ Each black node represents an entity set (of IDs).

§ Each directed edge represents a foreign key.

§ Each open circle represent an attribute.

§ Data integrity constraints are path equalities.

§ Data is stored as tables in the obvious way.

4 / 30

Why FQL?

§ FQL is a language for manipulating the schemas and instances just
defined.

§ But you can also manipulate such schemas and instances using SQL.

§ We assert that, because of its categorical roots, FQL is a better
language for doing so.

§ FQL is “database at a time”, not “table at a time”.
§ FQL operations necessarily respect constraints.
§ Unlike SQL, FQL is expressive enough to be used for information

integration (see papers).
§ Parts of FQL can run on SQL, and vice versa.

5 / 30

FQL Basics

§ A schema mapping F : S Ñ T is a constraint-respecting mapping:

nodespSq Ñ nodespT q edgespSq Ñ pathspT q

and it induces three data migration operations:

§ ∆F : T -inst Ñ S-inst (like projection)
§ ΣF : S-inst Ñ T -inst (like union)
§ ΠF : S-inst Ñ T -inst (like join)

6 / 30

∆ (Project)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Bob $250

2 Sue $300

3 Alice $100

N2

ID Age

1 20

2 20

3 30

∆F
ÐÝÝ

N

ID Name Age Salary

1 Bob 20 $250

2 Sue 20 $300

3 Alice 30 $100

7 / 30

Π (Join)
Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Bob $250

2 Sue $300

3 Alice $100

N2

ID Age

1 20

2 20

3 30

ΠF
ÝÝÑ

N

ID Name Age Salary

1 Alice 20 $100

2 Alice 20 $100

3 Alice 30 $100

4 Bob 20 $250

5 Bob 20 $250

6 Bob 30 $250

7 Sue 20 $300

8 Sue 20 $300

9 Sue 30 $300

8 / 30

Σ (Union)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Bob $250

2 Sue $300

3 Alice $100

N2

ID Age

1 20

2 20

3 30

ΣF
ÝÝÑ

N

ID Name Age Salary

1 Alice null $100

2 Bob null $250

3 Sue null $300

4 null 20 null

5 null 20 null

6 null 30 null

9 / 30

Foreign keys

Name
˝

Salary
˝

N1
‚

f // N2‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary f

1 Bob $250 1

2 Sue $300 2

3 Alice $100 3

N2

ID Age

1 20

2 20

3 30

∆F
ÐÝÝ

ΠF ,ΣF
ÝÝÝÝÝÑ

N

ID Name Age Salary

1 Alice 20 $100

2 Bob 20 $250

3 Sue 30 $300

10 / 30

FQL Summary

§ FQL provides a “database at a time” query language for certain kinds
of relational databases.

§ For the categorically inclined, roughly:
§ Schemas are finitely-presented categories.
§ Schema mappings are functors.
§ Instances are functors to the category of sets.
§ The instances on any schema form a category.
§ pΣF ,∆F q and p∆F ,ΠF q are adjoint functors.

11 / 30

Programming FQL Schemas and Mappings using Haskell

§ By Haskell, I mean the the simply-typed λ-calculus (STLC):
§ Types t:

t ::“ 0 | 1 | t` t | tˆ t | tÑ t

§ Expressions e:

e ::“ v | λv : t.e | ee | pq | fst e | snd e | pe, eq | K | inl e | inr e | pe ` eq

§ Equations:

fstpe, fq “ e sndpe, fq “ f pλv : t.eqf “ erv ÞÑ f s ...

§ Theorem: FQL schemas and mappings are a model of the STLC.
§ Given an STLC type t, you get an FQL schema rts.
§ Given an STLC term Γ $ e : t, you get an FQL schema mapping

res : rΓs Ñ rts

12 / 30

Programming FQL Schemas using Haskell

§ The empty type, 0, (in Haskell, data Empty =), becomes a schema
with no nodes:

§ The unit type, 1, (in Haskell, data Unit = TT), becomes a schema
with one node:

TT
‚

13 / 30

Programming FQL Schemas using Haskell

§ Sum types, t` t1, (in Haskell, Either t t’), are given by addition:

a
‚

b
‚

c
‚ ` d

‚
e
‚ “

inl a
‚

inl b
‚

inl c
‚

inr d
‚

inr e
‚

§ Product types, tˆ t1, (in Haskell, (t,t’)), are given by multiplication:

a
‚

b
‚

c
‚ ˆ d

‚
e
‚ “

pa,dq
‚

pb,dq
‚

pc,dq
‚

pa,eq
‚

pb,eq
‚

pb,eq
‚

14 / 30

Programming FQL Schemas using Haskell

§ Function types, tÑ t1 are given by exponentiation:

a
‚

b
‚

c
‚ Ñ d

‚
e
‚ “

paÞÑd,bÞÑd,cÞÑdq
‚

paÞÑe,bÞÑd,cÞÑdq
‚

paÞÑd,bÞÑe,cÞÑdq
‚

paÞÑd,bÞÑd,cÞÑeq
‚

paÞÑe,bÞÑe,cÞÑdq
‚

paÞÑd,bÞÑe,cÞÑeq
‚

paÞÑe,bÞÑd,cÞÑeq
‚

paÞÑe,bÞÑe,cÞÑeq
‚

15 / 30

Programming FQL Schemas using Haskell

§ Constant types, corresponding to user defined types in Haskell, are
simply schemas:

Emp
‚

worksIn //

manager

��
Dept
‚

secretary
oo

§ The operations ˆ,`,Ñ behave correctly with respect to foreign keys.

§ Hence, STLC types translate to FQL schemas.

16 / 30

Programming FQL Mappings using Haskell

§ In Haskell, we have K :: a. In FQL, we have a mapping K : 0 Ñ a:

K
ÝÑ Emp

‚
worksIn //

manager

��
Dept
‚

secretary
oo

§ In Haskell, we have pq :: 1. In FQL, we have a mapping pq : aÑ 1:

Emp
‚

worksIn //

manager

��
Dept
‚

secretary
oo

pq
ÝÑ TT

‚

17 / 30

Programming FQL Mappings using Haskell

§ In Haskell, we have inl :: aÑ a` b and inr :: bÑ a` b.

a
‚

b
‚

c
‚ `

d
‚

e
‚

inl,inr
ÝÝÝÝÑ

inl a
‚

inl b
‚

inl c
‚

inr d
‚

inr e
‚

§ In Haskell, we have fst :: aˆ bÑ a and snd :: aˆ bÑ b.

a
‚

b
‚

c
‚ ˆ d

‚
e
‚

fst,snd
ÐÝÝÝÝ

pa,dq
‚

pb,dq
‚

pc,dq
‚

pa,eq
‚

pb,eq
‚

pc,eq
‚

18 / 30

Programming FQL Mappings using Haskell

§ We can translate the other STLC operations too:
§ If f :: tÑ a and g :: tÑ b, we need pf, gq :: tÑ aˆ b.

§ This is pairing.

§ If f :: aÑ t and g :: bÑ t, we need pf ` gq :: a` bÑ t.
§ This is case.

§ If f :: aˆ bÑ c, we need Λf : aÑ pbÑ cq.
§ This is usually called curry.

§ We need ev :: paÑ bq ˆ bÑ a.
§ This is function application.

§ All FQL operations obey the required equations,

fstpa, bq “ a sndpa, bq “ b ...

§ And the FQL operations work correctly with foreign keys.

§ Hence, FQL mappings are a model of the STLC.

19 / 30

Retrospective

§ STLC types and terms, FQL schemas and mappings, and even sets
and functions between them, are all bi-cartesian closed categories.

§ Haskell programmers will eventually encounter category theory,
starting with bi-cartesian closed categories.

§ That theory can be put to use in other places, namely databases.

§ In fact, as we will see next, for every FQL schema S, the category of
S-instances is also bi-cartesian closed.

20 / 30

Programming FQL Instances and Morphisms using Haskell

§ By Haskell, I mean the the simply-typed λ-calculus (STLC):
§ Types t:

t ::“ 0 | 1 | t` t | tˆ t | tÑ t

§ Expressions e:

e ::“ v | λv : t.e | ee | pq | fst e | snd e | pe, eq | K | inl e | inr e | pe ` eq

§ Equations:

fstpe, fq “ e sndpe, fq “ f pλv : t.eqf “ erv ÞÑ f s ...

§ Theorem: For each schema S, the FQL S-instances and
S-homomorphisms are a model of the STLC.

§ A database homomorphism is a map of IDs to IDs.
§ Given an STLC type t, you get an FQL S-instance rts.
§ Given an STLC term Γ $ e : t, you get an FQL S-homomorphism

res : rΓs Ñ rts

21 / 30

Programming FQL Instances using Haskell

§ Let S be the schema
a
‚

f // b‚

§ The empty type, 0, (in Haskell, data Empty =), becomes an S
instance with no data:

a

ID f

b

ID

§ The unit type, 1, (in Haskell, data Unit = TT), becomes an S
instance with one ID per table:

a

ID f

1 1

b

ID

1

22 / 30

Programming FQL Instances using Haskell

§ Sum types t` t1 are given by disjoint union:

a

ID f

1 3

2 3

b

ID

3

4

`

a

ID f

a c

b c

b

ID

c

d

“

a

ID f

inl 1 inl 3

inl 2 inl 3

inr a inr c

inr b inr c

b

ID

inl 3

inl 4

inr c

inr d

§ Product types tˆ t1 are given by joining:

a

ID f

1 3

2 3

b

ID

3

4

ˆ

a

ID f

a c

b c

b

ID

c

d

“

a

ID f

(1,a) (3,c)

(1,b) (3,c)

(2,a) (3,c)

(2,b) (3,c)

b

ID

(3,c)

(3,d)

(4,c)

(4,d)

23 / 30

Programming FQL Instances using Haskell

§ Function types tÑ t1 are given by finding all homomorphisms:

a

ID f

1 3

2 3

b

ID

3

4

Ñ

a

ID f

a c

b c

b

ID

c

d

“

a

ID f

1 ÞÑ a, 2 ÞÑ b, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ b, 2 ÞÑ a, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ a, 2 ÞÑ a, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ b, 2 ÞÑ b, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ a, 2 ÞÑ b, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

1 ÞÑ b, 2 ÞÑ a, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

1 ÞÑ a, 2 ÞÑ a, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

1 ÞÑ b, 2 ÞÑ b, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

b

ID

3 ÞÑ c, 4 ÞÑ c

3 ÞÑ c, 4 ÞÑ d

3 ÞÑ d, 4 ÞÑ c

3 ÞÑ d, 4 ÞÑ d

24 / 30

Programming FQL Instances using Haskell

§ Constant instances, corresponding to user defined types in Haskell, are
simply instances:

a

ID f

p q

r t

b

ID

q

t

§ The operations ˆ,`,Ñ behave correctly with respect to foreign keys.

§ Hence, for every schema S, STLC types translate to S-instances.

25 / 30

Programming FQL Homomorphisms using Haskell

§ in Haskell, we have K :: a. In FQL, we have a homomorphism
K : 0 Ñ a:

a

ID f

b

ID
K
ÝÑ

a

ID f

p q

r t

b

ID

q

t

§ In Haskell, we have pq :: 1. In FQL, we have a homomorphism
pq : aÑ 1:

a

ID f

p q

r t

b

ID

q

t

pq
ÝÑ

a

ID f

1 1

b

ID

1

26 / 30

Programming FQL Homomorphisms using Haskell

§ As before, inl : aÑ a` b and inr : bÑ a` b

a

ID f

1 3

2 3

b

ID

3

4

`

a

ID f

a c

b c

b

ID

c

d

inl,inr
ÝÝÝÝÑ

a

ID f

inl 1 inl 3

inl 2 inl 3

inr a inr c

inr b inr c

b

ID

inl 3

inl 4

inr c

inr d

§ As before, fst : aˆ bÑ a and snd : aˆ bÑ b

a

ID f

1 3

2 3

b

ID

3

4

ˆ

a

ID f

a c

b c

b

ID

c

d

fst,snd
ÐÝÝÝÝÝ

a

ID f

(1,a) (3,c)

(1,b) (3,c)

(2,a) (3,c)

(2,b) (3,c)

b

ID

(3,c)

(3,d)

(4,c)

(4,d)

27 / 30

Retrospective

§ The language of FQL instances contains all operations required to be
a model of the STLC.

§ In fact, at the level of instances, FQL is a model of higher-order logic:

types t ::“ . . . | Prop

expressions e ::“ . . . | e “ e

§ The STLC structure interacts with the ∆,Σ,Π data migration
operations in a nice way, e.g,:

ΣF pI ` Jq “ ΣF pIq ` ΣF pJq ΠF pI ˆ Jq “ ΠF pIq ˆΠF pIq

28 / 30

Demo of the FQL IDE

§ The FQL IDE is an open-source java application, downloadable at

categoricaldata.net{fql.html

§ It supports all the operations discussed above: 0, 1,`,ˆ,Ñ for
schemas and instances, and the data migration operations ∆,Σ,Π.

§ To the extent possible, all operations are implemented with SQL:
§ 0, 1,`,ˆ,∆,Π implemented with SQL.
§ ΣF only implementable with SQL if F has a certain property.
§ Ñ not implementable with SQL.

§ Other features:
§ It translates from SQL to FQL.
§ It emits RDF encodings of instances.
§ It comes with many built-in examples.
§ It can be used as a command-line compiler.

29 / 30

Conclusion

§ First, we talked about FQL, a functorial query language based on
category theory.

§ Schemas are particular ER diagrams, and instances are relational tables.
§ The ∆,Σ,Π operations migrate data from one schema to another.

§ FQL contains two copies of the STLC: one at the level of schemas and
mappings, and one at the level of instances and homomorphisms.

§ Conclusion: Haskell, in the guise of the STLC, occurs in many areas of
CS outside of programming.

§ Finally, we saw a demo of the FQL IDE.
§ We are looking for collaborators: categoricaldata.net/fql.html

30 / 30

