A Functorial Query Language

Ryan Wisnesky, David Spivak

Department of Mathematics
Massachusetts Institute of Technology

{wisnesky, dspivak}@math.mit.edu

Presented at Boston Haskell
April 16, 2014

Outline

» Introduction to FQL.

» FQL is a database query language based on category theory.

» But, there will be no category theory in this talk.

» How to program FQL using Haskell.

» FQL provides an alternative semantics for Haskell programs.
» If you can program Haskell, you can program FQL.

» Demo of the FQL IDE.
» Project webpage: categoricaldata.net/fql.html

N

30

Introduction to FQL

» In FQL, a database schema is a special kind of entity-relationship
(ER) diagram.

manager
worksIn Dept
°
secretary
f1rst last name
(©]

Emp.manager.worksIn = Emp.worksIn Dept.secretary.worksIn = Dept

Enp Dept
ID | mgr | works | first | last D T soc | name
101 103 ql0 Al Akin 410 | 102 cs
102 102 x02 Bob Bo 02 101 Math
103 | 103 | ql0 | Carl | Cork X

Introduction to FQL

manager
worksl n Dept
L]
/ \ secretary

f 1rst last name

Emp.manager.worksIn = Emp.worksIn Dept.secretary.worksIn = Dept

» Each black node represents an entity set (of IDs).
» Each directed edge represents a foreign key.

» Each open circle represent an attribute.

» Data integrity constraints are path equalities.

» Data is stored as tables in the obvious way.

30

Why FQL?

» FQL is a language for manipulating the schemas and instances just
defined.

» But you can also manipulate such schemas and instances using SQL.

» We assert that, because of its categorical roots, FQL is a better
language for doing so.
» FQL is “database at a time"”, not “table at a time".
» FQL operations necessarily respect constraints.
» Unlike SQL, FQL is expressive enough to be used for information
integration (see papers).
» Parts of FQL can run on SQL, and vice versa.

FQL Basics

» A schema mapping F' : S — T is a constraint-respecting mapping:

nodes(S) — nodes(T) edges(S) — paths(T')
and it induces three data migration operations:
» Ap : T-inst — S-inst (like projection)

» g : S-inst — T-inst (like union)
» I : S-inst — T-inst (like join)

6

30

A (Project)

Name

Name

alary

_r,
N1 ///// N2 N /////
[] [] []
Age ///// Age
o o
N1 N2
ID || Name | Salary || ID || Age R ID || Name | Age | Salary
1 Bob $250 1 20 | <51 Bob 20 $250
2 Sue $300 2 20 2 Sue 20 $300
3 Alice $100 3 30 3 Alice 30 $100

~

30

IT (Join)

Name

o=

Name

alary
O

AN

Age Age
(e} o
ID || Name | Age | Salary

1 Alice 20 $100
N1 N2 2 Alice 20 $100
ID || Name | Salary || ID || Age 3 Alice 30 $100
1 Bob $250 1 20 | 5[2 Bob 20 $250
2 Sue $300 2 20 5 Bob 20 $250
3 Alice $100 3 30 6 Bob 30 $250
7 Sue 20 $300
8 Sue 20 $300
9 Sue 30 $300

30

Y. (Union)

Name

alary

X
|
N

[]
o=

Age

3 O
N
W I e
ID || Name | Salary || ID || Age T
sp | 2 Bob null | $250
1 Bob $250 1 20 | = Sue | null | $300
2 |[Sue | $300 || 2 || 20 4 ([nul | 20 | null
3 Alice $100 3 30 5 null 20 null
6 null 30 null

Foreign keys

Name
[}

Name
¢}

alary

F
N1 ///// f N2 N /////
o —> 0 []
Age ///// Age
[e] O
N1 N2 R
ID || Name | Salary | f || ID || Age n(_i ID || Name | Age | Salary
1 Bob $250 | 1 1 20 | =251 Alice 20 $100
2 Sue $300 | 2 || 2 20 2 Bob 20 $250
3 Alice | $100 | 3 || 3 30 3 Sue 30 $300

10/30

FQL Summary

» FQL provides a “database at a time” query language for certain kinds
of relational databases.

» For the categorically inclined, roughly:

» Schemas are finitely-presented categories.

» Schema mappings are functors.

» Instances are functors to the category of sets.
» The instances on any schema form a category.
» (Xp,Ar) and (Ap,IIg) are adjoint functors.

11/30

Programming FQL Schemas and Mappings using Haskell

» By Haskell, | mean the the simply-typed A-calculus (STLC):
» Types t:
tu=0|1|t+t|txt|t—t

» Expressions e:
ex=v|Xv:tel|ee| ()| fste|snde]|(ee)|L|inle|inre]| (e + e)
» Equations:
fstle,f)=e snd(e,f)=f (Mw:te)f =e[v— f]

» Theorem: FQL schemas and mappings are a model of the STLC.
» Given an STLC type ¢, you get an FQL schema [¢].
» Given an STLC term T" |- e : ¢, you get an FQL schema mapping

le] [T — [1]

12/30

Programming FQL Schemas using Haskell

» The empty type, 0, (in Haskell, data Empty =), becomes a schema
with no nodes:

[

» The unit type, 1, (in Haskell, data Unit = TT), becomes a schema
with one node:

13/30

Programming FQL Schemas using Haskell

» Sum types, t + ¢/, (in Haskell, Either t t’), are given by addition:

inl a inl b inl ¢
° ° °
a b [d e | —
° ° ° + ° o |
inr d inr e
° °

» Product types, t x t/, (in Haskell, (t,t?)), are given by multiplication:

(a,d) (b,d) (c,d)
° ° °

op
[Jep
q]

(a,e) (b,e) (b,e)
[} [} [}

14 /30

Programming FQL Schemas using Haskell

» Function types, t — t’ are given by exponentiation:

o

[Nel

(a—>d,b—d,cr—d)
°
(a—d,b—e,c—d)
°

(a—>e,b—e,c—d)
°

a—e,b—d,c—e
b el
[]

(ar>e,b—d,cr—d)
)

(a—d,b—d,cr—e)
°

(a—d,b—e,cre)
)

(ar>e,b—e,cre)

15/30

Programming FQL Schemas using Haskell

» Constant types, corresponding to user defined types in Haskell, are

simply schemas:
manager
QP worksIn Dept
<~ °

secretary

» The operations x, +, — behave correctly with respect to foreign keys.

» Hence, STLC types translate to FQL schemas.

16 /30

Programming FQL Mappings using Haskell

» In Haskell, we have L :: a. In FQL, we have a mapping L : 0 — a:

manager
i ksl
Emp worksin Dept
< °

secretary

» In Haskell, we have () :: 1. In FQL, we have a mapping () : a — 1:

manager
Emp worksln Dept () TT
7 s —5

[I ———] []
secretary

17 /30

Programming FQL Mappings using Haskell

» In Haskell, we have inl :: a — a + b and inr :: b — a + b.

inl a inl b inl c
° [°
a b ¢ |4 a o | inlinr
° ° ° ° °
inr d inr e
° °

» In Haskell, we have fst::a xb— aand snd::a xb—b.

(a7d) (bzd) (Cyd)
° ° °
a c e fst,snd
° lo) o | X g o |
(ae) (be) (c,e)
° ° °

18/30

Programming FQL Mappings using Haskell

» We can translate the other STLC operations too:
»If fut—>aandg::t—0b weneed (f,g)::t—axb.
» This is pairing.

»If frra—>tandg:b—t, weneed (f+g)::a+b—t.

> This is case.

rIf fraxb—c weneed Af :a— (b—c).
» This is usually called curry.

» We need ev :: (a > b) x b — a.

> This is function application.
» All FQL operations obey the required equations,

fst(a,b) =a snd(a,b) =b

» And the FQL operations work correctly with foreign keys.

» Hence, FQL mappings are a model of the STLC.

19/30

Retrospective

» STLC types and terms, FQL schemas and mappings, and even sets
and functions between them, are all bi-cartesian closed categories.

» Haskell programmers will eventually encounter category theory,
starting with bi-cartesian closed categories.

» That theory can be put to use in other places, namely databases.

» In fact, as we will see next, for every FQL schema S, the category of
S-instances is also bi-cartesian closed.

20/30

Programming FQL Instances and Morphisms using Haskell

» By Haskell, | mean the the simply-typed A-calculus (STLC):

» Types t:
tu=0|1|t+t|txt|t—t

» Expressions e:
ex=v|Xv:tel|ee| ()| fste|snde]|(ee)|L|inle|inre]| (e + e)
» Equations:

fstle,f)=e snd(e,f)=f (Mw:te)f =elv— f]

» Theorem: For each schema S, the FQL S-instances and
S-homomorphisms are a model of the STLC.

» A database homomorphism is a map of IDs to IDs.
» Given an STLC type ¢, you get an FQL S-instance [¢].
» Given an STLC term T |- e : ¢, you get an FQL .S-homomorphism

le] [T — 1]

21/30

Programming FQL Instances using Haskell

» Let S be the schema

a f b
o —— o

» The empty type, 0, (in Haskell, data Empty =), becomes an S
instance with no data:

a b
ID || f ID |

» The unit type, 1, (in Haskell, data Unit = TT), becomes an S
instance with one ID per table:

Programming FQL Instances using Haskell

» Sum types ¢ + t’ are given by disjoint union:

a b

b b ID f ID

ID ID ID ID inl 1 inl 3 inl 3
1 3 a c inl 2 inl 3 inl 4
2 4 b d inra || inrc inr c
inrb || inrc inr d

» Product types t x t’ are given by joining:

a b

b b ID f ID
D 1D D ID Ta) || 3o | [(3o
1 3 a c (1.b) || (3.¢) (3.d)
2 4 b d (2,2) || (3,0) (4,¢)
(2,b) || (3,¢) (4.d)

23 /30

Programming FQL Instances using Haskell

» Function types t — t’ are given by finding all homomorphisms:

a b a b
ID || f ID ID || f ID _
1[3 3 a c ||
2 3 4 b d
a
ID f
1—a,2—-b3—cd—d | 3—cd—d b
1—b2—a,3—cd—d | 3—cd—d ID
l—a,2—a,3—cd—d | 3—cd—d 3—>cd—c
1—-b2—-b3—cd—d 3—c,d—d 3—c,d—d
1l—a,2—-b3—-d4d—c || 3—dd—c 3—d,d—c
1—b2—a,3—dd—c || 3—d4d—c 3—d,4—d
1—a,2—a,3—d4d—c | 3—dd—c
1—b,2—b3—d4—c 3—d,d—c

24 /30

Programming FQL Instances using Haskell

» Constant instances, corresponding to user defined types in Haskell, are
simply instances:

a b
ID f ID
P q q
r t t

» The operations x, +, — behave correctly with respect to foreign keys.

» Hence, for every schema S, STLC types translate to S-instances.

25 /30

Programming FQL Homomorphisms using Haskell

» in Haskell, we have L :: a. In FQL, we have a homomorphism
1:0—a:

a b

a b i)lD ID
D 7] 0] [o[
r t t

» In Haskell, we have () :: 1. In FQL, we have a homomorphism
():a—1:

a b 3 5
ID f ID Q) D f D
P q q 1 1 1
r t t

26 /30

Programming FQL Homomorphisms using Haskell

» As before, inl : a — a + b and

a b

b b ID f ID

ID ID ID ID inl, inl 1 inl 3 inl 3
1 3 inl 2 inl 3 inl 4

2 4
» As before, fst:axb—>aand snd:axb—1b

a b

b a b ID f ID
1D 1D D ID]| jetwna | (La) || 3o) || (Gio)
1 3 a c (1.b) || (3,c) (3.d)
2 4 b d (2,a) (3,¢) (4,0)
(2b) || 3.9 | [(4d)

30

Retrospective

» The language of FQL instances contains all operations required to be

a model of the STLC.

» In fact, at the level of instances, FQL is a model of higher-order logic:

types t ::= ... | Prop

expressionse:=... |[e=¢e¢

» The STLC structure interacts with the A, X, II data migration
operations in a nice way, e.g,:

EF(I+J)=EF(I)+EF(J) HF(IXJ)ZHF(I)XHF(I)

28 /30

Demo of the FQL IDE

v

The FQL IDE is an open-source java application, downloadable at
categoricaldata.net/fgl.html

» It supports all the operations discussed above: 0,1, 4, x, — for
schemas and instances, and the data migration operations A, >, 11.

» To the extent possible, all operations are implemented with SQL:
» 0,1, 4, x, A, II implemented with SQL.
» X only implementable with SQL if F' has a certain property.
» — not implementable with SQL.

» Other features:
» It translates from SQL to FQL.
> It emits RDF encodings of instances.
> It comes with many built-in examples.
> It can be used as a command-line compiler.

29/30

Conclusion

» First, we talked about FQL, a functorial query language based on
category theory.

» Schemas are particular ER diagrams, and instances are relational tables.
» The A, X, II operations migrate data from one schema to another.

» FQL contains two copies of the STLC: one at the level of schemas and
mappings, and one at the level of instances and homomorphisms.

» Conclusion: Haskell, in the guise of the STLC, occurs in many areas of
CS outside of programming.

» Finally, we saw a demo of the FQL IDE.
» We are looking for collaborators: categoricaldata.net/fql.html

30/30

