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Introduction Purpose of the talk

Purpose of the talk

There is an fundamental connection between databases and
categories.

Category theory can simplify how we think about and use databases.

We can clearly see all the working parts and how they fit together.

Powerful theorems can be brought to bear on classical DB problems.
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Introduction The pros and cons of relational databases

The pros and cons of relational databases

Relational databases are reliable, scalable, and popular.

They are provably reliable to the extent that they strictly adhere to
the underlying mathematics.

Make a distinction between

the system you know and love, vs.
the relational model, as a mathematical foundation for this system.
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Introduction The pros and cons of relational databases

You’re not really using the relational model.

Current implementations have departed from the strict relational
formalism:

Tables may not be relational (duplicates, e.g from a query).
Nulls (and labeled nulls) are commonly used.

The theory of relations (150 years old) is not adequate to
mathematically describe modern DBMS.

The relational model does not offer guidance for schema mappings
and data migration.

Databases have been intuitively moving toward what’s best described
with a more modern mathematical foundation.
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Introduction The pros and cons of relational databases

Category theory gives better description

Category theory (CT) does a better job of describing what’s already
being done in DBMS.

Puts functional dependencies and foreign keys front and center.
Allows non-relational tables (e.g. duplicates in a query).
Labeled nulls and semi-structured data fit in neatly.

All columns of a table are the same type of thing. It’s simpler.

CT offers guidance for schema mapping and data migration.

It offers the opportunity to deeply integrate programming and data.

Theorems within category theory, and links to other branches of math
(e.g. topology), can be used in databases.
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Introduction What is category theory?

What is category theory?

Since its invention in the early 1940s, category theory has
revolutionized math.

It’s like set theory and logic, except less floppy, more principles-based.

Category theory has been proposed as a new foundation for
mathematics (to replace set theory).

It was invented to build bridges between disparate branches of math
by distilling the essence of mathematical structure.
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Introduction What is category theory?

Branching out

Category theory naturally fosters connections between disparate fields.

It has branched out of math and into physics, linguistics, and
materials science.

It has had much success in the theory of programming languages.

The pure category-theoretic concept of monads has vastly extended
the reach of functional programming.

Can category theory improve how we think about databases?
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Introduction The basic idea

Schemas are categories, categories are schemas

The connection between databases and categories is simple and
strong.

Reason: categories and database schemas do the same thing.
A schema gives a framework for modeling a situation;

Tables
Attributes

This is precisely what a category does.

Objects
Arrows.

They both model how entities within a given context interact.

Schema = Category.

In this talk, I’ll explain these ideas and some consequences.
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Introduction Plan of the talk

Plan of the talk

Lay out the basic idea of categories and that of databases, and show
the tight connection between them.

Discuss schema evolution and data migration.

Develop a connection to programming language theory.

Understand RDF in these terms.
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“Databases are categories” First some math

What is a category?

Idea: A category models entities of a certain sort
and the relationships between them.

C :=

•A f // •B

h

<<

g
%%
•C

•D
i
��

j
%%
•E

k

bb

Think of it like a graph: the nodes are entities and the arrows are
relationships.

Some paths can be declared equivalent to others

Example: declare that j ; k ' i ; i ; i and f ; g ' f ; h.
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“Databases are categories” First some math

Example

How could one interpret this kind of abstraction?

C :=

self email is an email from a person =

self email is an email to a person

•Self-email is an // •Email

to a

99

from a ))
•Person

Such “business rules” can be encoded into the category.
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“Databases are categories” First some math

What is the essence of structure?

If mathematics is the art of getting organized, what organizes math?

After thousands of years, people realized that there were some
essential features in common throughout much of math.

These are objects, arrows, paths, and path equivalence.

Or: things, tasks, processes, and “sameness of outcome”.

Or: primary keys, foreign keys, paths of FKs, and path equations.

Let’s give the definition.

David I. Spivak (MIT) Categorical databases Presented on 2012/01/13 12 / 58



“Databases are categories” First some math

Definition of a category I: Constituents

A category C consists of the following constituents:
1 A set Ob(C), called the set of objects of C.

(These will be tables.)
Objects x ∈ Ob(C) is often written as •x .

2 A set Arr(C), called the set of arrows of C, and two functions

src , tgt : Arr(C)→ Ob(C),

assigning to each arrow its source and its target object, respectively.

(Arrows will be foreign keys from “source” table to “target” table.)

An arrow f ∈ Arr(C) is often written •x f−−−→ •y , where
x = src(f ), y = tgt(f ).
We define a path in C to be a finite “head-to-tail” sequence of arrows

in C, e.g. •x f−−−→ •y g−−−→ •z .

3 An notion of equivalence for paths, denoted '.
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“Databases are categories” First some math

Definition of a category II: Rules

These constituents must satisfy the following requirements:
1 If p ' q are equivalent paths then the sources agree: src(p) = src(q).
2 If p ' q are equivalent paths then the targets agree: tgt(p) = tgt(q).
3 Suppose we have two paths (of any lengths) b → c:

• // · · · // •
��@@@@

•b

??~~~~

  @@@@@

p
&&o

i d _ Z U
O

q
88O

U Z _ d i
o
•c

• // · · · // •

??~~~~~

If p ' q then for any extensions

•a m // •b '

p

''o j _ T O

q

77O T _ j o•
c or •b

p

''o j _ T O
'

q

77O T _ j o•
c n // •d

m; p ' m; q and p; n ' q; n.
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“Databases are categories” What does equivalence of paths mean?

What does equivalence of paths mean?

Arrows represent foreign keys.

A path p : •a → •b represents “following foreign keys” from table a to
table b.

Following a path p, we can take any record in table a and return a
record in table b.

We declare two paths p, q : •a → •b equivalent if they should return
the same record in b for any record in a.

In typical DB practices, equivalent paths are avoided by cutting one
of the paths.

This is considered good design.
However, it often causes pain in ones neck.
Category theory has this concept built in.
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“Databases are categories” What does equivalence of paths mean?

The power of path equivalences

Ever wanted two directory paths to contain the same file?

Example: this “Beamer” presentation belongs in my math talks folder
and in my J&J consulting folder.

My file system does not allow that, because without path
equivalences, it is dangerous.

With commutative diagrams we can declare two paths equivalent:

•J&J talks

��

// •J&J Consulting stuff

X

// •Consulting stuff

��
•Math talks // •Math stuff // •All files (root)
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“Databases are categories” Examples of categories

The category of Sets

Above we see two sets and a function between them. We would

denote this categorically by •A f−−→ •B
The objects of Set represent sets.
The arrows in Set represent functions.
A path represents a sequence of composable functions.
Two paths are equivalent if their compositions are the same.

Note that b3 and b5 have been inserted, and a1 and a4 have been
merged.
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“Databases are categories” Examples of categories

A totally different category: an ordered set

A ordered set is a set S together with a notion of ≤, satisfying
a ≤ a for all a ∈ S , and
if a ≤ b and b ≤ c , then a ≤ c .

Given some ordered set S , we can build a corresponding category S:
Ob(S) = S ,
One arrow a→ b if a ≤ b
No arrows a→ b if a 6≤ b.
All pairs of paths (having same source and target) are equivalent.

“Hasse diagram”:

•a

&&MMMMMM •b

•c
88rrrrrr

&&LLLLLL

•d
88qqqqqq

&&MMMMMM •e •f

•g
88rrrrrr

Think “permissions”: a ≤ c means a has fewer accessors than b.
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“Databases are categories” Examples of categories

Functors: mappings between categories

One way to think of a category is as a directed graph, where certain
paths have been declared equivalent.

A functor is a graph mapping that is required to respect equivalence
of paths.

Definition: A functor F : C → D consists of

a function Ob(C)→ Ob(D) and
a function Arr(C)→ Path(D),

such that F

respects sources and targets,
respects equivalences of paths.
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“Databases are categories” Functors to Set

Functors to Set

A category C is a system of objects and arrows, and an equivalence
relation on its paths.

A functor C → D is a mapping that preserves these structures.

Set is the category whose objects are sets, whose arrows are functions,
and where paths are equivalent if they compose to the same function.

If C is the category on the left below, then a functor I : C → Set
might look like this:

C :=

A
f //

g
��

B

C

; I :=

•a1 •a2 •a3

a1 7→ b1
a2 7→ b1
a3 7→ b2 //

��

•b1•b2

•c1
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“Databases are categories” What is a database?

What is a database?

A database consists of a bunch of tables and relationships between
them.

The rows of a table are called “records” or “tuples.”

The columns are called “attributes.”

An attribute may be “pure data” or may be a “key.”

A table may have “foreign key columns” that link it to other tables.
A foreign key of table A links into the primary key of table B.

A schema may have “business rules.”
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“Databases are categories” Foreign Keys and business rules

Foreign Keys and business rules

Example:

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr
q10 Sales 101
x02 Production 102

Note the Id (primary key) columns and the foreign key columns.

Id column could just be internal “row numbers” or could be typed.
“Row numbers” (i.e. pointers) are not part of the relational model but
they are naturally part of the categorical model.

Perhaps we should enforce certain integrity constraints (business
rules):

The manager of an employee E must be in the same department as E ,
The secretary of a department D must be in D.
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“Databases are categories” Foreign Keys and business rules

Data columns as foreign keys

Theoretically we can consider a data-type as a 1-column table.
Examples:

String
a
b

.

.

.
z
aa
ab

.

.

.

Integer
0
1

.

.

.
9
10
11

.

.

.

So even data columns can be considered as foreign keys (to respective
1-column tables).

Conclusion: each column in a table is a key – one primary,
the rest foreign.
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“Databases are categories” Foreign Keys and business rules

Example again

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr
q10 Sales 101
x02 Production 102

String
Id
a
b

.

.

.
z
aa
ab

.

.

.

C :=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��;;;;;;; •Department

Secr

oo

Name

��
•String •String •String

David I. Spivak (MIT) Categorical databases Presented on 2012/01/13 24 / 58



“Databases are categories” Database schema as a category

Database schema as a category

A database schema is a system of tables linked by foreign keys.
This is just a category!

C :=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��;;;;;;; •Department

Secr

oo

Name

��
•String •String •String

Each object x in C is a table (Employee, Departments, String);
each arrow x → y is a column of table x .

Id column of a table corresponds to the trivial path on that object.

Declaring business rules (e.g. Mgr;Dpt' Dpt) is declaring the path
equivalence.
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“Databases are categories” Schema=Category, Instance=Set-valued functor

Schema=Category, Instance=Set-valued functor

Let C be the following category

C :=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��;;;;;;; •Department

Secr

oo

Name

��
•String •String •String

A functor I : C → Set consists of

A set for each object of C and
a function for each arrow of C, such that
the declared equations hold.

In other words, I fills the schema with compatible data.

Categorical databases could also be called functional databases.
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“Databases are categories” Schema=Category, Instance=Set-valued functor

Data as a set-valued functor

C := I : C → Set

m; d ' d s; d ' idD

•Emp

d //

m

��

f

��
l

""EEEEEEE
•Dpt

s
oo

n

��
•Str •Str •Str

101,102,103
d //

m

��

f

��

l

$$IIIIIIIII
q10,x02

s
oo

n

��
a,b,. . . a,b,. . . a,b,. . .

.

A category C is a schema. An object x ∈ Ob(C) is a table.

A functor I : C → Set fills the tables with compatible data.

For each table x , the set I (x) is its set of rows.

The path equivalences in C are enforced by I as business rules.
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“Databases are categories” Schema=Category, Instance=Set-valued functor

Summary

The connection between categories and databases is simple.

A schema is a custom category.

Functors I : C → Set are instances.

What about functors F : C → D between schemas?
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Functorial schema mapping and data migration Changes

Changes

We’ve discussed the situation as though static: a single schema and a
single instance.

Next we’ll discuss changes.

Changing the schema (schema mappings).

Changing the data (updates).
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Functorial schema mapping and data migration Changes in schema

Changes in schema

Suppose in our modeling of a given context, we evolve from schema C
to schema D.

We should find a functorial connection between them.

Over time we may have something like

C = C0
F0−−−→ C1

F1−−−→ · · · Fn−−−→ Cn = D

We want to be able to migrate data from C to D and vice versa.

We want to be able to migrate queries against C to queries against D
and vice versa.

And we want this all to work as it “should”.
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Functorial schema mapping and data migration Changes in schema

Composing functors

Suppose F : C → D and G : D → E are functors.

What is their composition C → E?

We have a way to take objects in C to objects in E ,
Arrows in C turn into paths in D and arrows in D turn into paths in E .
We can concatenate these, thus taking arrows in C to paths in E .
Our rules ensure that the equivalences in C will be preserved in E .

Composing functors is going to make migrating data more
straightforward.
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Functorial schema mapping and data migration Changes in data

Changes in data

Let C be a schema and let I , J : C → Set be two instances.

A natural transformation u : I → J consists of the following:

For each object (table) T ∈ Ob(C) we get a map of record sets

uT : I (T )→ J(T ).

For each arrow (foreign key) f : T → T ′, we get data consistency;
formally,

J(f ) ◦ uT = uT ′ ◦ I (f ).

If J is the result of an insert or merge (a progressive update) to I then

u : I → J.

Same thing if I is the result of a delete or a split (a regressive update)
to J.
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Functorial schema mapping and data migration Changes in data

The category of instances

Given a schema C, the category of instances on C is denoted C–Set.

The objects of C–Set are functors (instances) I : C → Set.
The arrows are natural transformations (progressive updates).
The paths are sequences of progressive updates.
Two paths are equivalent if they result in the same mapping.

The category C–Set is a topos; it has an internal language and logic
supporting the typed lambda calculus.

That means, it works well with the theory of programming languages.
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Functorial schema mapping and data migration Data migration

Data migration

Let C and D be different schemas.

We call a functor between them, F : C → D, a schema mapping.

Given such a mapping, we want to be able to canonically transfer
instances on C to instances on D and vice versa.

That means, given F : C → D we want functors

C–Set→ D–Set

and
D–Set→ C–Set.
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Functorial schema mapping and data migration Data migration

What a functor C–Set→ D–Set means.

A functor C–Set→ D–Set means:

Objects: To every instance on C we associate an instance on D.

Arrows: For every progressive update on a C-instance there is a
corresponding progressive update on the associated D-instance.

Path equivalences: If two different sequences of progressive updates
on C-instances result in the same mapping, then the same will hold of
the corresponding sequences on D-instances.
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Functorial schema mapping and data migration The “easy” migration functor, ∆

The “easy” migration functor, ∆

Given a schema mapping (i.e. a functor)

F : C → D,

we can transform instances on D to instances on C as follows:

Given I : D → Set C F //

F ;I

66D I // Set get F ;I : C → Set

This process will preserve updates: given an update on I on schema
D, it will spit out a corresponding update of (F ; I ) on schema C.

Thus we have a functor ∆F : D–Set→ C–Set.
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Functorial schema mapping and data migration The “easy” migration functor, ∆

How ∆F works

Consider the schema mapping

C :=

•DptName

•Emp

�� &&MMMMMMM //

88qqqqqqq
•FrstNm

•SecLstNm •LstNm

F−−−−→

D:=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��;;;;;;; •Department

Secr

oo

Name

��
•String •String •String

We get ∆F : D–Set→ C–Set

Given an instance on D we get one on C.

Given an update on D we get one on C.
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Functorial schema mapping and data migration The “easy” migration functor, ∆

Compare the Informatica picture
C=

•DptName

•Emp

�� ''OOOOO //

77ooooo
•FrstNm

•SecLstNm •LstNm

F−−−−→

D=

•Emp
d //

m

��

f

������ l

��;;;; •Dept

s
oo

n��
•Str •Str •Str
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Functorial schema mapping and data migration The “easy” migration functor, ∆

So many kinds of functors..

Functors in three different contexts.

We started with functors as instances, I : C → Set.
Then we introduced functors as schema mappings, F : C → D.
In the last slide we showed a functor on instance categories

∆F : D–Set→ C–Set.

Recall the simple definition of functor we gave at the beginning: it
holds in each case.

Functors provide a powerful and reusable abstraction because of the
simplicity of their definition.
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Functorial schema mapping and data migration The “easy” migration functor, ∆

Adjoints

Some functors X → Y have a “special partner” Y → X called an
adjoint.

What it will mean to us is that we can always “invert” a data
migration D–Set→ C–Set in two universal ways.

Roughly, our first inversion will be universal for progressive updates.
Our second inversion will be universal for regressive updates.

These migration functors will provide something like updatable views.

The important thing is to note is that these aren’t made up; they are
“canonical” or “universal”. They’re part of the mathematics – they
come with the package.
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Functorial schema mapping and data migration The “adjoint” migration functors, Σ and Π

The “adjoint” migration functors, Σ and Π

Given a schema mapping (i.e. a functor) F : C → D,

We have a functor ∆F : D–Set→ C–Set given by composition.

It has two adjoints:

a “sum-oriented” adjoint ΣF : C–Set→ D–Set, and
a “product-oriented” adjoint ΠF : C–Set→ D–Set.

Thus, given a schema mapping F , three functors emerge for the
instance categories,

∆F ,ΣF , and ΠF

come with the package.

Roughly, these correspond to project (∆), union (Σ), and join (Π).

They allow one to move data back and forth between C and D in
canonical ways.
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Functorial schema mapping and data migration The “adjoint” migration functors, Σ and Π

The “product-oriented” push-forward ΠF makes joins

•SSN

•First

•T1

CC���������
::uuuuu

$$IIII •T2

ddIIIII

zzuuuu

�����������

•Last

•Salary

F−−−→

•SSN

•First

•U

DD									
::vvvvv

$$HHHH

��555555555

•Last

•Salary

Given any instance I : C → Set, get an instance ΠF (I ) : D → Set.

The rows in table •U will be the join of the rows in •T1 and •T2 over
•First and •Last.
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Functorial schema mapping and data migration The “adjoint” migration functors, Σ and Π

The “sum-oriented” push-forward ΣF makes unions

C:=

•SSN

•First

•T1

CC���������
::uuuuu

$$IIII •T2

ddIIIII

zzuuuu

�����������

•Last

•Salary

F−−−→

D:=

•SSN

•First

•U

DD									
::vvvvv

$$HHHH

��555555555

•Last

•Salary

Given any instance I : C → Set, get an instance ΣF (I ) : D → Set.

The rows in table •U will be the union of the rows in •T1 and •T2.

It will automatically use labeled nulls for the unknown cells.
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Functorial schema mapping and data migration Views

Views

These functors can be arbitrarily composed to create views.

We can think of any series of functors

C1 D1
F1oo G1 // E1

H1 // C2 D2
F2oo G2 // · · · Hn // Cn

as a view.

The view is the functor

V := ΣHn ◦ · · · ◦ ΠG1 ◦∆F1 : C1–Set→ Cn–Set.

We can export data from C1 into Cn through V .

Note that Cn is a schema: not just one table, but possibly many, with
foreign keys.

It’s no problem to create views that have foreign keys (unsupported in
DBMS).
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Functorial schema mapping and data migration Views

A simple “SELECT” query using views

SELECT title, isbn
FROM book
WHERE price > 100

C :=

•book title //
isbn

$$JJJJJJ
price��

•String

•R>100 // •R •isbn-num

F−→

D :=

•W //

�� X

•book title //
isbn

$$JJJJJJ
price��

•String

•R>100 // •R •isbn-num

G←−

E :=

•W
title //

isbn

$$HHHHHH •String

•isbn-num

V := ∆G ◦ ΠF is the appropriate view.

For any I : C → Set, we materialize the view as V (I ).

Views with foreign keys are easy.
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Functorial schema mapping and data migration Views

One more slide about views

Views can look complex.

We can think of any series of functors

C1 D1
F1oo G1 // E1

H1 // C2 D2
F2oo G2 // · · · Hn // Cn

as describing a view.
In actuality, the view is the functor

V := ΣHn ◦ · · · ◦ ΠG1 ◦∆F1 : C1–Set→ Cn–Set.

We can materialize the view for any I : C1 → Set as V (I ) : Cn → Set.

But a theorem says we can accomplish the same thing in three steps:

C1 DFoo G // E H // Cn

Project – Join – Union.
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Interfacing between schemas

We are often interested in taking data from one enterprise model C
and transferring it to another enterprise model D.

Such transfers can also be accomplished using our notion of views.

Queries on the old schema translate directly to queries on the new
schema.

We might need to perform calculations such as concatenation,
addition, comparison, conversion of units, etc. in order to interface
these schemas.

To do this we’ll need an underlying “typing category.”
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Incorporating data types and functions

In the example:

C=

Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��;;;;;;; •Department

Secr

oo

Name

��
•String •String •String

how do we know that •String is what it says it is?

That is, given I : C → Set, how do we specify that I (•String) ∈ Set is
some pre-defined data type like String.
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Power of category theory: connection to PL is easy

In programming language theory, they consider the category Type.

Objects of Type are data types, and
arrows are functions.
Theoretically, there exists a functor V : Type→ Set.

So Type is (in our definition) a database schema and V is a
“canonical instance”!

Since database schemas are categories and Type is a category, we can
integrate the two.
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Typing databases Power of category theory: connection to PL is easy

Example

Lets make a category B = •St1 •St2 •St3 and a functor
F : B → Type, sending each object to String ∈ Ob(Type).

The composition B F−→ Type
V−→ Set yields an instance

V ′ := ∆F (V ) = V ◦ F : B → Set.

There is also an obvious functor

B=

•St1 •St2 •St3 G
−−−−→

C=
Mgr;Dpt' Dpt Secr;Dpt' idDepartment

•Employee
Dpt //

Mgr

��

First

���������
Last

��;;;;;;; •Department

Secr

oo

Name

��
•String •String •String

A typed instance I : C → Set is one for which we have a map
∆G (I )→ V ′.
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Typing databases Power of category theory: connection to PL is easy

Takeaway

Databases are custom categories.

The datatypes in a programming language form a category.

The whole point of category theory is to allow us to connect different
categories.

Unifying database and program could be very beneficial.
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The Grothendieck construction

Let C be a category and let I : C → Set be a functor.

We can convert I into a category Gr(I ) in a canonical way:

Example:

C := A
f //

g

��

B

C

; I = •a1 •a2 •a3

(b1,b1,b2) //

��

•b1•b2

•c1

Gr(I ) is also known as the category of elements of I :

•a1

,,

��::::
•a2

��

++•a3

������
33•b1 •b2

•c1
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Grothendieck construction applied to database instances

Suppose given the following instance, considered as I : C → Set

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr’y
q10 Sales 101
x02 Production 102

C =

m; d ' d s; d ' idD

•E
d //

m

��

f

��
l

��

•D
s

oo

n

wwooooooooooooo

•S

Here is Gr(I ), the category of elements of I :

Gr(I ) =

•101

f

��

l

//

m

99

d

**
•102 •103 •q10 •x02

s

cc

n

ww

. . . •Alan •Alao . . .

. . . •Bertranc •Bertrand . . .

•David . . . •Hilbert •Production

•Russell •Sales •Turing . . .
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A different perspective on data

In fact, the Grothendieck construction of I : C → Set always yields not
only a category Gr(I ) but a functor

π : Gr(I )→ C.
Gr(I ):=

•101

f

��

l

//

m

99

d

**
•102 •103 •q10 •x02

s

cc

n

ww

. . . •Alan •Alao . . .

. . . •Bertranc •Bertrand . . .

•David . . . •Hilbert •Production

•Russell •Sales •Turing . . .

π−−−−→

C :=

m; d ' d s; d ' idD

•E
d //

m

��

f

��

l

��

•D
s

oo

n

~~|||||||||||

•S

The fiber over (inverse image of) every object X ∈ C is a set of objects
π−1(X ) ⊆ Gr(I ). That set is I (X ).
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RDF and the Grothendieck construction RDF schema and stores

RDF schema and stores

Gr(I )=

•101

f

��

l

//

m

99

d

**
•102 •103 •q10 •x02

s

cc

n

ww

. . . •Alan •Alao . . .

. . . •Bertranc •Bertrand . . .

•David . . . •Hilbert •Production

•Russell •Sales •Turing . . .

π−−−−→

C =

m; d ' d s; d ' idD

•E
d //

m

��

f

��

l

��

•D
s

oo

n

~~|||||||||||

•S

The relation to RDF triples is clear: each arrow f : x → y in Gr(I ) is
a triple with subject x , predicate f , and object y .

For example (101 department q10), (x02 name Production), etc..

C is the RDF schema and Gr(I ) is the triple store.

SPARQL queries (graph patterns) are easily expressible in this model.
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Allowing for semi-structured data

We can think of any functor π : D → C as a “semi-instance” on C.
Such a functor π can encode incomplete, non-atomic, or bad data.

D := •101 // •Hello

•102

66mmmmm

•103 •Goodbye

•104

BB���������� 66mmmmm

π ↓

C := •A
f // •B

Row 103 has no data in the f cell, and row 104 has too much.

Bad data (data not conforming to declared path equivalences) can also
occur in a functor π : D → C.

Any semi-instance on C can be functorially “corrected” to an instance if
necessary.

For example “labeled nulls” will be created for any incomplete data.
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RDF and the Grothendieck construction Allowing for semi-structured data

Summary

There’s a well-known connection between relational databases and
RDF.

This connection is born out in a most natural way with category
theory.

The model gracefully extends – what should work works.
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Summary of the talk

I hope the connection between databases and categories is clear.

Employee
Id First Last Mgr Dpt
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Alan Turing 103 q10

Department
Id Name Secr
q10 Sales 101
x02 Production 102

C=

m; d ' d s; d ' idD

•E
d //

m

��

f

��				
l

��5555 •D
s

oo
n��

•S •S •S

I discussed how one can use this connection to facilitate:
schema mapping and data migration;
formalizing views;
merging database and programming language theory;
merging relational and RDF outlooks;

The main point is that basic category theory provides a
self-contained, unified, and profitable approach to databases.

Thanks for the invitation to speak!
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