There is a fundamental connection between databases and categories.

- Category theory can simplify how we think about and use databases.
- We can clearly see all the working parts and how they fit together.
- Powerful theorems can be brought to bear on classical DB problems.
The pros and cons of relational databases

- Relational databases are reliable, scalable, and popular.
- They are provably reliable to the extent that they strictly adhere to the underlying mathematics.
- Make a distinction between
 - the system you know and love, vs.
 - the relational model, as a mathematical foundation for this system.
You’re not really using the relational model.

- Current implementations have departed from the strict relational formalism:
 - Tables may not be relational (duplicates, e.g. from a query).
 - Nulls (and labeled nulls) are commonly used.
- The theory of relations (150 years old) is not adequate to mathematically describe modern DBMS.
- The relational model does not offer guidance for schema mappings and data migration.
- Databases have been intuitively moving toward what’s best described with a more modern mathematical foundation.
Category theory gives better description

- Category theory (CT) does a better job of describing what's already being done in DBMS.
 - Puts functional dependencies and foreign keys front and center.
 - Allows non-relational tables (e.g. duplicates in a query).
 - Labeled nulls and semi-structured data fit in neatly.
- All columns of a table are the same type of thing. It’s simpler.
- CT offers guidance for schema mapping and data migration.
- It offers the opportunity to deeply integrate programming and data.
- Theorems within category theory, and links to other branches of math (e.g. topology), can be used in databases.
Since its invention in the early 1940s, category theory has revolutionized math.

It’s like set theory and logic, except less floppy, more principles-based.

Category theory has been proposed as a new foundation for mathematics (to replace set theory).

It was invented to build bridges between disparate branches of math by distilling the essence of mathematical structure.
Branching out

- Category theory naturally fosters connections between disparate fields.
- It has branched out of math and into physics, linguistics, and materials science.
- It has had much success in the theory of programming languages.
- The pure category-theoretic concept of *monads* has vastly extended the reach of functional programming.
- Can category theory improve how we think about databases?
Schemas are categories, categories are schemas

- The connection between databases and categories is simple and strong.
- Reason: categories and database schemas do the same thing.
 - A schema gives a framework for modeling a situation;
 - Tables
 - Attributes
 - This is precisely what a category does.
 - Objects
 - Arrows.
 - They both model how entities within a given context interact.
- Schema = Category.
- In this talk, I’ll explain these ideas and some consequences.
Plan of the talk

- Lay out the basic idea of categories and that of databases, and show the tight connection between them.
- Discuss schema evolution and data migration.
- Develop a connection to programming language theory.
- Understand RDF in these terms.
What is a category?

- Idea: A category models entities of a certain sort and the relationships between them.

Think of it like a graph: the nodes are entities and the arrows are relationships.

- Some paths can be declared equivalent to others
 - Example: declare that $j; k \simeq i; i; i$ and $f; g \simeq f; h$.
How could one interpret this kind of abstraction?

\[C := \]

Self-email is an email from a person =

self email is an email to a person

Such “business rules” can be encoded into the category.
What is the essence of structure?

- If mathematics is the art of getting organized, what organizes math?
- After thousands of years, people realized that there were some essential features in common throughout much of math.
- These are objects, arrows, paths, and path equivalence.
- Or: things, tasks, processes, and “sameness of outcome”.
- Or: primary keys, foreign keys, paths of FKS, and path equations.
- Let’s give the definition.
Definition of a category I: Constituents

A category \mathcal{C} consists of the following constituents:

1. A set $\text{Ob}(\mathcal{C})$, called the set of objects of \mathcal{C}.
 - (These will be tables.)
 - Objects $x \in \text{Ob}(\mathcal{C})$ is often written as \bullet^x.

2. A set $\text{Arr}(\mathcal{C})$, called the set of arrows of \mathcal{C}, and two functions $\text{src}, \text{tgt}: \text{Arr}(\mathcal{C}) \rightarrow \text{Ob}(\mathcal{C})$,

 assigning to each arrow its source and its target object, respectively.
 - (Arrows will be foreign keys from “source” table to “target” table.)
 - An arrow $f \in \text{Arr}(\mathcal{C})$ is often written $\bullet^x \xrightarrow{f} \bullet^y$, where $x = \text{src}(f), y = \text{tgt}(f)$.
 - We define a path in \mathcal{C} to be a finite “head-to-tail” sequence of arrows in \mathcal{C}, e.g. $\bullet^x \xrightarrow{f} \bullet^y \xrightarrow{g} \bullet^z$.

3. An notion of equivalence for paths, denoted \sim.

Definition of a category II: Rules

These constituents must satisfy the following requirements:
1. If \(p \simeq q \) are equivalent paths then the sources agree: \(\text{src}(p) = \text{src}(q) \).
2. If \(p \simeq q \) are equivalent paths then the targets agree: \(\text{tgt}(p) = \text{tgt}(q) \).
3. Suppose we have two paths (of any lengths) \(b \to c \):

 ![Diagram showing paths and equivalences]

 If \(p \simeq q \) then for any extensions

 \[
 \bullet \xrightarrow{a} \bullet \xrightarrow{m} \bullet \xrightarrow{\sim} \bullet \xrightarrow{\sim} \bullet \equiv p \equiv \bullet \xrightarrow{\sim} \bullet \xrightarrow{\sim} \bullet \\
 \bullet \xrightarrow{\sim} \bullet \equiv \bullet \xrightarrow{\sim} \bullet
 \]

 or

 \[
 \bullet \xrightarrow{p} \bullet \equiv \bullet \equiv \bullet \xrightarrow{\sim} \bullet \xrightarrow{n} \bullet \equiv \bullet \xrightarrow{\sim} \bullet
 \]

 \[
 m; p \simeq m; q \quad \text{and} \quad p; n \simeq q; n.
 \]
What does equivalence of paths mean?

- Arrows represent foreign keys.
- A path $p: \bullet^a \rightarrow \bullet^b$ represents “following foreign keys” from table a to table b.
- Following a path p, we can take any record in table a and return a record in table b.
- We declare two paths $p, q: \bullet^a \rightarrow \bullet^b$ equivalent if they should return the same record in b for any record in a.
- In typical DB practices, equivalent paths are avoided by cutting one of the paths.
 - This is considered good design.
 - However, it often causes pain in ones neck.
 - Category theory has this concept built in.
The power of path equivalences

- Ever wanted two directory paths to contain the same file?
- Example: this “Beamer” presentation belongs in my math talks folder and in my J&J consulting folder.
- My file system does not allow that, because without path equivalences, it is dangerous.
- With commutative diagrams we can declare two paths equivalent:

```
J&J talks ────> J&J Consulting stuff ────> Consulting stuff
  
Math talks ──> Math stuff ──> All files (root)
```
The category of Sets

Above we see two sets and a function between them. We would denote this categorically by $\bullet A \xrightarrow{f} \bullet B$.

- The objects of \textbf{Set} represent sets.
- The arrows in \textbf{Set} represent functions.
- A path represents a sequence of composable functions.
- Two paths are equivalent if their compositions are the same.

Note that b_3 and b_5 have been inserted, and a_1 and a_4 have been merged.
A totally different category: an ordered set

- A ordered set is a set S together with a notion of \leq, satisfying
 - $a \leq a$ for all $a \in S$, and
 - if $a \leq b$ and $b \leq c$, then $a \leq c$.
- Given some ordered set S, we can build a corresponding category \mathcal{S}:
 - $\text{Ob}(\mathcal{S}) = S$,
 - One arrow $a \to b$ if $a \leq b$
 - No arrows $a \to b$ if $a \nleq b$.
 - All pairs of paths (having same source and target) are equivalent.
- “Hasse diagram”:

 ![Hasse diagram](image)

- Think “permissions”: $a \leq c$ means a has fewer accessors than b.
Functors: mappings between categories

- One way to think of a category is as a directed graph, where certain paths have been declared equivalent.
- A functor is a graph mapping that is required to respect equivalence of paths.

Definition: A functor $F: \mathcal{C} \to \mathcal{D}$ consists of

- a function $\text{Ob}(\mathcal{C}) \to \text{Ob}(\mathcal{D})$ and
- a function $\text{Arr}(\mathcal{C}) \to \text{Path}(\mathcal{D})$,

such that F

- respects sources and targets,
- respects equivalences of paths.
A category C is a system of objects and arrows, and an equivalence relation on its paths.

A functor $C \to D$ is a mapping that preserves these structures.

\textbf{Set} is the category whose objects are sets, whose arrows are functions, and where paths are equivalent if they compose to the same function.

If C is the category on the left below, then a functor $I : C \to \textbf{Set}$ might look like this:
What is a database?

- A database consists of a bunch of tables and relationships between them.
- The rows of a table are called “records” or “tuples.”
- The columns are called “attributes.”
- An attribute may be “pure data” or may be a “key.”
 - A table may have “foreign key columns” that link it to other tables.
 - A foreign key of table A links into the primary key of table B.
- A schema may have “business rules.”
Foreign Keys and business rules

- Example:

<table>
<thead>
<tr>
<th>Id</th>
<th>First</th>
<th>Last</th>
<th>Mgr</th>
<th>Dpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>David</td>
<td>Hilbert</td>
<td>103</td>
<td>q10</td>
</tr>
<tr>
<td>102</td>
<td>Bertrand</td>
<td>Russell</td>
<td>102</td>
<td>x02</td>
</tr>
<tr>
<td>103</td>
<td>Alan</td>
<td>Turing</td>
<td>103</td>
<td>q10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Secr</th>
</tr>
</thead>
<tbody>
<tr>
<td>q10</td>
<td>Sales</td>
<td>101</td>
</tr>
<tr>
<td>x02</td>
<td>Production</td>
<td>102</td>
</tr>
</tbody>
</table>

- Note the Id (primary key) columns and the foreign key columns.
 - Id column could just be internal “row numbers” or could be typed.
 - “Row numbers” (i.e. pointers) are not part of the relational model but they are naturally part of the categorical model.
- Perhaps we should enforce certain integrity constraints (business rules):
 - The manager of an employee \(E \) must be in the same department as \(E \),
 - The secretary of a department \(D \) must be in \(D \).
Data columns as foreign keys

- Theoretically we can consider a data-type as a 1-column table.
- Examples:

<table>
<thead>
<tr>
<th>String</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>z</td>
<td>9</td>
</tr>
<tr>
<td>aa</td>
<td>10</td>
</tr>
<tr>
<td>ab</td>
<td>11</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- So even data columns can be considered as foreign keys (to respective 1-column tables).
- Conclusion: each column in a table is a key – one primary, the rest foreign.
Example again

<table>
<thead>
<tr>
<th>Id</th>
<th>First</th>
<th>Last</th>
<th>Mgr</th>
<th>Dpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>David</td>
<td>Hilbert</td>
<td>103</td>
<td>q10</td>
</tr>
<tr>
<td>102</td>
<td>Bertrand</td>
<td>Russell</td>
<td>102</td>
<td>x02</td>
</tr>
<tr>
<td>103</td>
<td>Alan</td>
<td>Turing</td>
<td>103</td>
<td>q10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Secr</th>
</tr>
</thead>
<tbody>
<tr>
<td>q10</td>
<td>Sales</td>
<td>101</td>
</tr>
<tr>
<td>x02</td>
<td>Production</td>
<td>102</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Mgr;Dpt} & \sim \text{Dpt} \\
\text{Secr;Dpt} & \sim \text{id}_{\text{Department}}
\end{align*}
\]
Database schema as a category

- A database schema is a system of tables linked by foreign keys.
- This is just a category!

Each object x in C is a table (Employee, Departments, String);
- each arrow $x \to y$ is a column of table x.

Id column of a table corresponds to the trivial path on that object.

Declaring business rules (e.g. $\text{Mgr;Dpt} \simeq \text{Dpt}$) is declaring the path equivalence.
Let C be the following category

\[C := \begin{align*}
\text{Mgr} & \xrightarrow{\sim} \text{Dpt} \\
\text{Secr} & \xrightarrow{\sim} \text{id}_{\text{Department}}
\end{align*} \]

\[C := \\
\begin{array}{ccc}
\text{Employee} & \xleftarrow{\text{First}} & \text{String} \\
& \xrightarrow{\text{Last}} & \\
& \text{String} & \xrightarrow{\text{Name}} & \text{String}
\end{array} \]

A functor $I : C \rightarrow \textbf{Set}$ consists of:

- A set for each object of C and
- A function for each arrow of C, such that
- the declared equations hold.

In other words, I fills the schema with compatible data.

Categorical databases could also be called \textit{functional databases}.
A category \mathcal{C} is a schema. An object $x \in \text{Ob}(\mathcal{C})$ is a table.

A functor $I: \mathcal{C} \rightarrow \text{Set}$ fills the tables with compatible data.

For each table x, the set $I(x)$ is its set of rows.

The path equivalences in \mathcal{C} are enforced by I as business rules.
Summary

- The connection between categories and databases is simple.
- A schema is a custom category.
- Functors $I : C \to \textbf{Set}$ are instances.
- What about functors $F : C \to D$ between schemas?
Changes

- We’ve discussed the situation as though static: a single schema and a single instance.
- Next we’ll discuss changes.
- Changing the schema (schema mappings).
- Changing the data (updates).
Suppose in our modeling of a given context, we evolve from schema \mathcal{C} to schema \mathcal{D}.

We should find a functorial connection between them.

Over time we may have something like

$$\mathcal{C} = \mathcal{C}_0 \xrightarrow{F_0} \mathcal{C}_1 \xrightarrow{F_1} \cdots \xrightarrow{F_n} \mathcal{C}_n = \mathcal{D}$$

We want to be able to migrate data from \mathcal{C} to \mathcal{D} and vice versa.

We want to be able to migrate queries against \mathcal{C} to queries against \mathcal{D} and vice versa.

And we want this all to work as it “should”.
Suppose $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$ are functors.

What is their composition $\mathcal{C} \to \mathcal{E}$?

- We have a way to take objects in \mathcal{C} to objects in \mathcal{E},
- Arrows in \mathcal{C} turn into paths in \mathcal{D} and arrows in \mathcal{D} turn into paths in \mathcal{E}.
- We can concatenate these, thus taking arrows in \mathcal{C} to paths in \mathcal{E}.
- Our rules ensure that the equivalences in \mathcal{C} will be preserved in \mathcal{E}.

Composing functors is going to make migrating data more straightforward.
Changes in data

- Let C be a schema and let $I, J : C \to \textbf{Set}$ be two instances.

- A *natural transformation* $u : I \to J$ consists of the following:
 - For each object (table) $T \in \text{Ob}(C)$ we get a map of record sets
 $$u_T : I(T) \to J(T).$$
 - For each arrow (foreign key) $f : T \to T'$, we get data consistency; formally,
 $$J(f) \circ u_T = u_{T'} \circ I(f).$$

- If J is the result of an insert or merge (a *progressive update*) to I then
 $$u : I \to J.$$

- Same thing if I is the result of a delete or a split (a *regressive update*) to J.
The category of instances

- Given a schema \mathcal{C}, the category of instances on \mathcal{C} is denoted $\mathcal{C} \rightarrow \text{Set}$.
 - The objects of $\mathcal{C} \rightarrow \text{Set}$ are functors (instances) $I : \mathcal{C} \rightarrow \text{Set}$.
 - The arrows are natural transformations (progressive updates).
 - The paths are sequences of progressive updates.
 - Two paths are equivalent if they result in the same mapping.

- The category $\mathcal{C} \rightarrow \text{Set}$ is a topos; it has an internal language and logic supporting the typed lambda calculus.

- That means, it works well with the theory of programming languages.
Data migration

- Let \mathcal{C} and \mathcal{D} be different schemas.
- We call a functor between them, $F : \mathcal{C} \rightarrow \mathcal{D}$, a *schema mapping*.
- Given such a mapping, we want to be able to canonically transfer instances on \mathcal{C} to instances on \mathcal{D} and vice versa.
- That means, given $F : \mathcal{C} \rightarrow \mathcal{D}$ we want functors

$$\mathcal{C}\text{–}\text{Set} \rightarrow \mathcal{D}\text{–}\text{Set}$$

and

$$\mathcal{D}\text{–}\text{Set} \rightarrow \mathcal{C}\text{–}\text{Set}.$$
What a functor $\mathcal{C} \to \mathcal{D}$ means.

A functor $\mathcal{C} \to \mathcal{D}$ means:

- **Objects**: To every instance on \mathcal{C} we associate an instance on \mathcal{D}.
- **Arrows**: For every progressive update on a \mathcal{C}-instance there is a corresponding progressive update on the associated \mathcal{D}-instance.
- **Path equivalences**: If two different sequences of progressive updates on \mathcal{C}-instances result in the same mapping, then the same will hold of the corresponding sequences on \mathcal{D}-instances.
The “easy” migration functor, Δ

- Given a schema mapping (i.e. a functor)
 \[F : C \to D, \]
 we can transform instances on D to instances on C as follows:
 \[
 \begin{array}{ccc}
 C & \xrightarrow{F} & D \\
 \downarrow{I} & & \downarrow{I} \\
 \text{Set} & \xrightarrow{F;I} & \text{Set}
 \end{array}
 \]
 Given $l : D \to \text{Set}$

- This process will preserve updates: given an update on l on schema D, it will spit out a corresponding update of $(F; I)$ on schema C.

- Thus we have a functor $\Delta_F : D–\text{Set} \to C–\text{Set}$.
How Δ_F works

- Consider the schema mapping

For $\mathcal{C} := \bullet \text{DptName} \leftarrow \bullet \text{Emp} \leftarrow \bullet \text{FrstNm} \leftarrow \bullet \text{SecLstNm} \leftarrow \bullet \text{LstNm}$

And for $\mathcal{D} := \bullet \text{Mgr;Dpt} \leftarrow \bullet \text{Secr;Dpt} \leftarrow \bullet \text{Department}$

We get $\Delta_F : \mathcal{D} - \text{Set} \rightarrow \mathcal{C} - \text{Set}$

- Given an instance on \mathcal{D} we get one on \mathcal{C}.
- Given an update on \mathcal{D} we get one on \mathcal{C}.
Functorial schema mapping and data migration

The “easy” migration functor, Δ

Compare the Informatica picture

$$C = \begin{array}{c}
\text{Emp} \\
\downarrow \\
\text{SecLstNm} \\
\downarrow \\
\text{FrstNm} \\
\downarrow \\
\text{LstNm} \\
\downarrow \\
\text{DptName}
\end{array}$$

$$D = \begin{array}{c}
\text{Emp} \\
\downarrow \\
\text{Str} \\
\downarrow \\
\text{Str} \\
\downarrow \\
\text{Str} \\
\downarrow \\
\text{Dept}
\end{array}$$

David I. Spivak (MIT)

Presented on 2012/01/13
So many kinds of functors..

- Functors in three different contexts.
 - We started with functors as instances, $I : C \to \text{Set}$.
 - Then we introduced functors as schema mappings, $F : C \to D$.
 - In the last slide we showed a functor on instance categories
 \[\Delta_F : D\text{–Set} \to C\text{–Set}. \]

- Recall the simple definition of functor we gave at the beginning: it holds in each case.

- Functors provide a powerful and reusable abstraction because of the simplicity of their definition.
Adjoints

- Some functors $\mathcal{X} \to \mathcal{Y}$ have a “special partner” $\mathcal{Y} \to \mathcal{X}$ called an adjoint.
- What it will mean to us is that we can always “invert” a data migration $\mathcal{D} \to \mathcal{C}$ in two universal ways.
 - Roughly, our first inversion will be universal for progressive updates.
 - Our second inversion will be universal for regressive updates.
- These migration functors will provide something like updatable views.
- The important thing is to note is that these aren’t made up; they are “canonical” or “universal”. They’re part of the mathematics – they come with the package.
The “adjoint” migration functors, Σ and Π

Given a schema mapping (i.e. a functor) $F : C \to D$,
- We have a functor $\Delta_F : D\text{–Set} \to C\text{–Set}$ given by composition.
- It has two adjoints:
 - a “sum-oriented” adjoint $\Sigma_F : C\text{–Set} \to D\text{–Set}$, and
 - a “product-oriented” adjoint $\Pi_F : C\text{–Set} \to D\text{–Set}$.
- Thus, given a schema mapping F, three functors emerge for the instance categories,
 $$\Delta_F, \Sigma_F, \text{ and } \Pi_F$$
 come with the package.
- Roughly, these correspond to project (Δ), union (Σ), and join (Π).
- They allow one to move data back and forth between C and D in canonical ways.
The “product-oriented” push-forward Π_F makes joins

- Given any instance $I : C \to \textbf{Set}$, get an instance $\Pi_F(I) : D \to \textbf{Set}$.
- The rows in table \bullet^U will be the join of the rows in \bullet^{T_1} and \bullet^{T_2} over \bullet^{First} and \bullet^{Last}.
Functorial schema mapping and data migration

The “adjoint” migration functors, Σ and Π

The “sum-oriented” push-forward Σ_F makes unions

- Given any instance $I : C \to \textbf{Set}$, get an instance $\Sigma_F(I) : D \to \textbf{Set}$.
- The rows in table \bullet^U will be the union of the rows in \bullet^{T1} and \bullet^{T2}.
- It will automatically use labeled nulls for the unknown cells.
These functors can be arbitrarily composed to create views.

We can think of any series of functors

$$C_1 \xleftarrow{F_1} D_1 \xrightarrow{G_1} E_1 \xrightarrow{H_1} C_2 \xleftarrow{F_2} D_2 \xrightarrow{G_2} \cdots \xrightarrow{H_n} C_n$$

as a view.

The view is the functor

$$V := \Sigma H_n \circ \cdots \circ \Pi G_1 \circ \Delta F_1 : C_1 \text{–Set} \to C_n \text{–Set}. $$

We can export data from C_1 into C_n through V.

Note that C_n is a schema: not just one table, but possibly many, with foreign keys.

It’s no problem to create views that have foreign keys (unsupported in DBMS).
A simple “SELECT” query using views

SELECT title, isbn
FROM book
WHERE price > 100

\[\Delta_G \circ \Pi_F \] is the appropriate view.

For any \(I : \mathcal{C} \rightarrow \textbf{Set} \), we materialize the view as \(V(I) \).

Views with foreign keys are easy.
One more slide about views

- Views can look complex.
 - We can think of any series of functors

\[C_1 \leftarrow F_1 D_1 G_1 \rightarrow E_1 H_1 \rightarrow C_2 \leftarrow F_2 D_2 G_2 \rightarrow \cdots H_n \rightarrow C_n \]

as describing a view.
- In actuality, the view is the functor

\[V := \Sigma_{H_n} \circ \cdots \circ \Pi_{G_1} \circ \Delta_{F_1} : C_1 \rightarrow \text{Set} \rightarrow C_n \rightarrow \text{Set}. \]

- We can materialize the view for any \(I : C_1 \rightarrow \text{Set} \) as \(V(I) : C_n \rightarrow \text{Set} \).
- But a theorem says we can accomplish the same thing in three steps:

\[C_1 \leftarrow F D G \rightarrow E H \rightarrow C_n \]

- Project – Join – Union.
Interfacing between schemas

- We are often interested in taking data from one enterprise model \mathcal{C} and transferring it to another enterprise model \mathcal{D}.
- Such transfers can also be accomplished using our notion of views.
- Queries on the old schema translate directly to queries on the new schema.
- We might need to perform calculations such as concatenation, addition, comparison, conversion of units, etc. in order to interface these schemas.
- To do this we’ll need an underlying “typing category.”
In the example:

how do we know that \bullet^{String} is what it says it is?

That is, given $I: C \to \text{Set}$, how do we specify that $I(\bullet^{\text{String}}) \in \text{Set}$ is some pre-defined data type like String.
In programming language theory, they consider the category **Type**.
- Objects of **Type** are data types, and
- arrows are functions.
- Theoretically, there exists a functor $V : \text{Type} \to \text{Set}$.

So **Type** is (in our definition) a database schema and V is a “canonical instance”!

Since database schemas are categories and **Type** is a category, we can integrate the two.
Example

- Lets make a category $\mathcal{B} = \bullet \text{St1} \bullet \text{St2} \bullet \text{St3}$ and a functor $F: \mathcal{B} \to \text{Type}$, sending each object to $\text{String} \in \text{Ob}(\text{Type})$.
- The composition $\mathcal{B} \xrightarrow{F} \text{Type} \xrightarrow{V} \text{Set}$ yields an instance
 \[V' := \Delta_F(V) = V \circ F: \mathcal{B} \to \text{Set}. \]
- There is also an obvious functor

![Diagram](image)

- A typed instance $I: \mathcal{C} \to \text{Set}$ is one for which we have a map $\Delta_G(I) \to V'$.
Takeaway

- Databases are custom categories.
- The datatypes in a programming language form a category.
- The whole point of category theory is to allow us to connect different categories.
- Unifying database and program could be very beneficial.
Let C be a category and let $I: C \to \textbf{Set}$ be a functor.

We can convert I into a category $Gr(I)$ in a canonical way:

Example:

$C := \begin{array}{c}
A \\
\downarrow^g \\
C
\end{array}$

$I = \begin{array}{ccc}
\bullet a_1 & \bullet a_2 & \bullet a_3 \\
\downarrow \\
\bullet b_1 & \bullet b_2
\end{array}$

$Gr(I)$ is also known as the category of elements of I:
Suppose given the following instance, considered as \(I : C \to \text{Set} \):

<table>
<thead>
<tr>
<th>Id</th>
<th>First</th>
<th>Last</th>
<th>Mgr</th>
<th>Dpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>David</td>
<td>Hilbert</td>
<td>103</td>
<td>q10</td>
</tr>
<tr>
<td>102</td>
<td>Bertrand</td>
<td>Russell</td>
<td>102</td>
<td>x02</td>
</tr>
<tr>
<td>103</td>
<td>Alan</td>
<td>Turing</td>
<td>103</td>
<td>q10</td>
</tr>
</tbody>
</table>

Here is \(Gr(I) \), the category of elements of \(I \):
A different perspective on data

In fact, the Grothendieck construction of \(I : \mathbf{C} \to \mathbf{Set} \) always yields not only a category \(\text{Gr}(I) \) but a functor

\[
\pi : \text{Gr}(I) \to \mathbf{C}.
\]

The fiber over (inverse image of) every object \(X \in \mathbf{C} \) is a set of objects \(\pi^{-1}(X) \subseteq \text{Gr}(I) \). That set is \(I(X) \).
The relation to RDF triples is clear: each arrow $f : x \to y$ in $Gr(I)$ is a triple with subject x, predicate f, and object y.

For example (101 department q10), (x02 name Production), etc..

C is the RDF schema and $Gr(I)$ is the triple store.

SPARQL queries (graph patterns) are easily expressible in this model.
Allowing for semi-structured data

- We can think of any functor $\pi : D \to C$ as a "semi-instance" on C.
- Such a functor π can encode incomplete, non-atomic, or bad data.

Row 103 has no data in the f cell, and row 104 has too much.
- Bad data (data not conforming to declared path equivalences) can also occur in a functor $\pi : D \to C$.
- Any semi-instance on C can be functorially "corrected" to an instance if necessary.
- For example "labeled nulls" will be created for any incomplete data.
Summary

- There's a well-known connection between relational databases and RDF.
- This connection is born out in a most natural way with category theory.
- The model gracefully extends – what should work works.
Summary of the talk

- I hope the connection between databases and categories is clear.

<table>
<thead>
<tr>
<th>Id</th>
<th>First</th>
<th>Last</th>
<th>Mgr</th>
<th>Dpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>David</td>
<td>Hilbert</td>
<td>103</td>
<td>q10</td>
</tr>
<tr>
<td>102</td>
<td>Bertrand</td>
<td>Russell</td>
<td>102</td>
<td>x02</td>
</tr>
<tr>
<td>103</td>
<td>Alan</td>
<td>Turing</td>
<td>103</td>
<td>q10</td>
</tr>
</tbody>
</table>

- I discussed how one can use this connection to facilitate:
 - schema mapping and data migration;
 - formalizing views;
 - merging database and programming language theory;
 - merging relational and RDF outlooks;

- The main point is that basic category theory provides a self-contained, unified, and profitable approach to databases.

Thanks for the invitation to speak!