
Algebraic Databases

Patrick Schultz, David Spivak, Christina Vasilakopoulou
Department of Mathematics

Massachusetts Institute of Technology

Ryan Wisnesky
Categorical Informatics

NEPLS
October 7, 2016

Ci

Outline

§ In the early 2010s, Spivak proposed using the functorial data model
(FDM) to solve data migration problems.

§ Schemas are categories, instances are set-valued functors.
§ A precursor to the FDM was proposed by Rosebrugh in the early 2000s.

§ It turns out the FDM can be understood as algebraic specification.

§ Talk goal: describe the FDM using algebraic terminology.

§ The FDM is being commercialized in a data integration tool by an
MIT spin-out company. Both the lab and the company are looking for
collaborators. (catinf.com)

§ Sponsored by ONR grant N000141310260, AFOSR grant
FA9550-14-1-0031, NIST SBIR grants 70NANB15H290 and
70NANB16H178, and NSF I-Corps grant 1611699.

2 / 26

Review of Algebraic Theories (Signatures, Terms)

A signature Sig consists of a set of sorts and a set of function symbols

f : s1 ˆ . . .ˆ sn Ñ s

A context Γ over signature Sig assigns variables to sorts

v1 : s1, . . . , vk : sk

A term of sort s in context Γ is either

§ a variable v, if v : s P Γ

§ a function application fpt1, . . . , tnq, if f : s1 ˆ . . .ˆ sn Ñ s and each
ti is a term of sort si

We write trv ÞÑ t1s for the substitution of term t1 for variable v in term t.

3 / 26

Review of Algebraic Theories (Theories, Entailment)

Let Sig be a signature. A (universally quantified) equation over Sig is a
formula Γ. t “ t1 : s, where t, t1 have sort s in context Γ. A set of
equations Th is a theory. The entailment relation Th $ between equations
is defined by inference rules

Γ. t “ t : s

Γ. t “ t1 : s

Γ. t1 “ t : s

Γ. t “ t1 : s Γ. t1 “ t2 : s

Γ. t “ t2 : s

Γ. t “ t1 : s v R Γ

Γ, v : s1. t “ t1 : s

Γ, v : s. t “ t1 : s1 Γ. e “ e1 : s

Γ. trv ÞÑ es “ t1rv ÞÑ e1s : s1

4 / 26

Review of Algebraic Theories (Theory Morphisms)

§ A morphism of signatures F : Sig1 Ñ Sig2 consists of
§ a function from sorts in Sig1 to sorts in Sig2
§ a function from symbols f : s1 ˆ . . .ˆ sn Ñ s in Sig1 to (open) terms
F ps1q ˆ . . .ˆ F psnq Ñ F psq in Sig2

§ A morphism of theories F : Th1 Ñ Th2 is a morphism of signatures
that preserves provable equality of terms

Th1 $ v1 : s1, . . . , vn : sn. t1 “ t2 : s

implies

Th2 $ v1 : F ps1q, . . . , vn : F psnq. F pt1q “ F pt2q : F psq

5 / 26

Review of Algebraic Theories (Models)

§ An algebra A over signature Sig consists of
§ a set Apsq for each sort s
§ a function Apfq : Aps1q ˆ . . .ˆApskq Ñ Apsq for each symbol
f : s1 ˆ . . .ˆ sk Ñ s

§ An environment η for context Γ takes each v : s P Γ to some Apsq.

§ We write AJtKη for the meaning of term t in environment η.

§ A is a model of a theory Th pTh |ù Aq when Th $ Γ. t “ t1 : s
implies AJtKη “ AJt1Kη for all terms t, t1 and environments η.

§ A morphism of Sig-algebras h : AÑ B is a family of functions
hpsq : Apsq Ñ Bpsq such that

hpsqpApfqpa1, . . . , anqq “ Bpfqphps1qpa1q, . . . , hpsnqpanqq

for every symbol f : s1 ˆ . . .ˆ sn Ñ s and ai P Apsiq.

6 / 26

Review of Algebraic Theories (Key Properties)

§ Entailment is semi-decidable.

§ Deduction is sound and complete.

§ Every theory Th admits a term model M :
§ Mpsq is the set of ground terms of sort s, modulo Th $.
§ M is initial: for every M 1 |ù Th, there is a unique M ÑM 1.
§ Construction of M is semi-computable.

§ Algebraic theories are presentations of cartesian multi-categories.

7 / 26

Algebraic Databases (Typesides)

§ A typeside Ty is an algebraic theory.
§ Its sorts are called types.
§ It represents an ambient computational context.

8 / 26

Example typeside

§ Types
Nat, Char, String

§ Symbols

zero : Nat, succ : Nat Ñ Nat, ` : Natˆ Nat Ñ Nat

A,B,C, . . . ,Z : Char

nil : String, cons : Char ˆ String Ñ String

§ Equations
@x. `pzero, xq “ x

@x, y. `psuccpxq, yq“ succp`px, yqq

9 / 26

Algebraic Databases (Schemas)

§ A typeside Ty is an algebraic theory.
§ Its sorts are called types.
§ It represents an ambient computational context.

§ A schema S on Ty extends Ty with
§ new sorts (called entities).
§ new symbols att : entity Ñ type (called attributes).
§ new symbols fk : entity Ñ entity (called foreign keys).
§ new unary equations of the form @v : entity. e “ e1.

10 / 26

Example Schema

§ Entities
Emp, Dept

§ Foreign Keys

manager : Emp Ñ Emp, works : Emp Ñ Dept, secretary : Dept Ñ Emp

§ Attributes

dname : Dept Ñ String, ename : Emp Ñ String

§ Equations
@e. workspmanagerpeqq “ workspeq

@d. workspsecretarypdqq “ d

@e. managerpmanagerpeqq “ managerpeq

11 / 26

Algebraic Databases (Instances)

§ A typeside Ty is an algebraic theory.
§ Its sorts are called types.
§ It represents an ambient computational context.

§ A schema S on Ty extends Ty with
§ new sorts (called entities).
§ new symbols att : entity Ñ type (called attributes).
§ new symbols fk : entity Ñ entity (called foreign keys).
§ new unary equations of the form @v : entity. e “ e1.

§ An instance I on S extends S with
§ new symbols gen : entity (called generators).
§ new symbols sk : type (called labelled nulls / skolem variables).
§ new non-quantified equations.

12 / 26

Example Instance

§ Generators
a, b, c : Emp, m, s : Dept

§ Equations

enamepaq “ Al, enamepcq “ Carl, dnamepmq “ Math

workspaq “ m, workspbq “ m, secretarypsq “ c, secretarypmq “ b

Abbreviated conspA, conspl, nilqq as Al, etc.

13 / 26

Instance Semantics is its Initial Term Model

Dept

ID dname secretary
m Math b

s dname(s) c

Emp

ID ename manager works

a Al mgr(a) m

b ename(b) mgr(b) m

c Carl mgr(c) s

mgr(a) ename(mgr(a)) mgr(a) m

mgr(b) ename(mgr(b)) mgr(b) m

mgr(c) ename(mgr(c)) mgr(c) s

14 / 26

Functorial Data Migration
§ Let S, T be two schemas on typeside Ty. A morphism F : S Ñ T is a

morphism of theories that is the identity on Ty.
§ The schemas on Ty form a category.

§ Let I, J be two instances on schema S. A morphism h : I Ñ J is a
morphism of theories that is the identity on S.

§ The instances on S form a category, S-inst.

§ A morphism F : S Ñ T induces adjoint data migration functors
§ ΣF : S-instÑ T -inst (like outer disjoint union then quotient)

defined as substitution

§ ∆F : T -instÑ S-inst (like project)

ΣF % ∆F

§ ΠF : S-instÑ T -inst (like join)

∆F % ΠF

Note: adjoints are only defined up to unique isomorphism.
15 / 26

Graphical (E/R Diagram) Notation for Schemas

Emp
‚

works //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

Emp.manager.works “ Emp.works Dept.secretary.works “ Dept

Emp.manager.manager “ Emp.manager

16 / 26

∆ (Project)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

∆F
ÐÝÝ

N

ID Name Salary Age

a Alice $100 20

b Bob $250 20

c Sue $300 30

In these examples we show instances as term models rather than theories.
IDs are meaningless – instances are only defined up to isomorphism.

17 / 26

Π (Join)
Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΠF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 20

b Alice $100 20

c Alice $100 30

d Bob $250 20

e Bob $250 20

f Bob $250 30

g Sue $300 20

h Sue $300 20

i Sue $300 30

18 / 26

Σ (Outer Disjoint Union then Quotient)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΣF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 null1
b Bob $250 null2
c Sue $300 null3
d null4 null5 20

e null6 null7 20

f null8 null9 30

(null1 abbreviates Agepaq, etc.)
19 / 26

Foreign keys

Name
˝

Salary
˝

N1
‚

f // N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary f

1 Alice $100 4

2 Bob $250 5

3 Sue $300 6

N2

ID Age

4 20

5 20

6 30

∆F
ÐÝÝ

ΠF ,ΣF
ÝÝÝÝÝÑ

N

ID Name Salary Age

a Alice $100 20

b Bob $250 20

c Sue $300 30

20 / 26

Expressivity of ∆,Σ,Π

§ Data migrations of the form

ΣF ˝∆G ˝ΠH

can express any SPCU relational algebra query under bag semantics.
SPCU under set semantics can express the data migration when

§ F is a discrete op-fibration (ensures union compatibility).
§ H is a surjection on attributes (ensures domain independence).
§ All theories denote finite categories (ensures computability).
§ The typeside has no function symbols (ensures atomicity of data).
§ We extend SPCU with a key generator (need fresh constants).

§ ΣF has similar semantics to an operation called the chase which is the
basis of relational data integration.

§ Migrations of the form ∆F ˝ΠG and ΣG ˝∆F can be specified using
for/where/return syntax.

21 / 26

Pivot (Instance ô Schema)

CS
‚

q10
‚name

oo 101
‚

works
oo first //

mgr

��

last

''Al
‚

Akin
‚

Math
‚

x02
‚name

oo 102
‚

works
oo first //

last

&&

mgr

QQ
Bob
‚

Bo
‚

103
‚

works

SS

mgr

QQ
first //

last

''Carl
‚

Cork
‚

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID name

q10 CS

x02 Math

22 / 26

QINL vs LINQ

§ Functorial data migration is a QINL (i.e., co-LINQ) query mechanism.

§ LINQ enriches programs with (schemas, queries and instances).
§ Collections are terms

Employee : Set Int manager : Set pIntˆ Intq

§ e : Employee is not a judgment.
§ There is a term P : Intˆ Set Int Ñ Bool.

§ QINL enriches (schemas, queries and instances) with programs.
§ Collections are types

Employee : Type manager : Employee Ñ Employee

§ e : Employee is a judgment.
§ There is not a term P : Employeeˆ Type Ñ Bool.

§ LINQ is more popular, but QINL is common in Coq, Agda, etc.

23 / 26

QINL is “one level up” from LINQ
§ LINQ

§ Schemas are collection types over a base type theory

Set pIntˆ Stringq

§ Instances are terms
tp1,CSqu Y tp2,Mathqu

§ Data migrations are functions

π1 : Set pIntˆ Stringq Ñ Set Int

§ QINL
§ Schemas are type theories over a base type theory

Dept, name : Dept Ñ String

§ Instances are term models

d1, d2 : Dept, namepd1q “ CS, namepd2q “ Math

§ Data migrations are functors

∆Dept : pDept, name : Dept Ñ Stringq - inst Ñ pDeptq - inst

24 / 26

FQL Demo

§ The FQL IDE is an open-source graphical schema mapping and data
integration tool available at

categoricaldata.net{fql.html

§ It is being commercialized by Categorical Informatics, a recent MIT
spin out

catinf.com

25 / 26

Conclusion

§ I presented an expressive formalism for specifying and manipulating
databases using algebraic theories.

§ Many concepts from algebraic specification appear in this work. Some
not mentioned:

§ Conservative extensions / consistency
§ Institutions, limits, colimits, etc
§ Automated theorem proving

§ Looking for feedback, users, and collaborators.

catinf.com

26 / 26

