Algebraic Databases

Patrick Schultz, David Spivak, Christina Vasilakopoulou
Department of Mathematics
Massachusetts Institute of Technology

Ryan Wisnesky
Categorical Informatics

NEPLS
October 7, 2016

Ci

Outline

» In the early 2010s, Spivak proposed using the functorial data model
(FDM) to solve data migration problems.

» Schemas are categories, instances are set-valued functors.
» A precursor to the FDM was proposed by Rosebrugh in the early 2000s.

» It turns out the FDM can be understood as algebraic specification.
» Talk goal: describe the FDM using algebraic terminology.

» The FDM is being commercialized in a data integration tool by an
MIT spin-out company. Both the lab and the company are looking for
collaborators. (catinf.com)

» Sponsored by ONR grant N000141310260, AFOSR grant
FA9550-14-1-0031, NIST SBIR grants 70NANB15H290 and
7ONANB16H178, and NSF I-Corps grant 1611699.

2/26

Review of Algebraic Theories (Signatures, Terms)

A signature Sig consists of a set of sorts and a set of function symbols
fis1x...x8, > s

A context I" over signature Sig assigns variables to sorts
V1:81y, ..., Up: Sk

A term of sort s in context I is either
» avariablev, ifv:sel

» a function application f(t1,...,t,), if f:s1 X ... % s, — s and each
t; is a term of sort s;

We write t[v +— t'] for the substitution of term t’ for variable v in term t.

3/26

Review of Algebraic Theories (Theories, Entailment)

Let Sig be a signature. A (universally quantified) equation over Sig is a
formula T. t =t : s, where t,t’ have sort s in context I". A set of
equations Th is a theory. The entailment relation Th - between equations
is defined by inference rules

It=t:s Mt=t:s r.t'=t":s
F't=t:s I t'=t:s rt=t":s
I.t=t:s vegl Nv:s.t=t:5 Ile=¢:s
Tow:s t=t:s [.tlv—e]=tv—e]:s

4/26

Review of Algebraic Theories (Theory Morphisms)

» A morphism of signatures F' : Sigy — Sigo consists of

» a function from sorts in Sig; to sorts in Sig,
» a function from symbols f: 51 x ... x s, — s in Sig; to (open) terms
F(s1) x ... x F(sp) = F(s) in Sigs

» A morphism of theories F' : Thy — Tho is a morphism of signatures
that preserves provable equality of terms

Thikvi:81, ..., Up: Sp.t1 =t2: s
implies

The = vi: F(s1), ..., vn: F(spn). F(t1) = F(t2) : F(s)

5/26

Review of Algebraic Theories (Models)

v

An algebra A over signature Sig consists of

» a set A(s) for each sort s
» a function A(f): A(s1) x ... x A(sg) — A(s) for each symbol
fis1x...xs, —>s

» An environment n for context I" takes each v : s € I' to some A(s).

v

We write A[t]n for the meaning of term ¢ in environment 7.

» A'is a model of a theory Th (Th = A) when Th-T.t=1t:s
implies A[t]n = A[t']n for all terms ¢,¢' and environments 7.

» A morphism of Sig-algebras h: A — B is a family of functions
h(s) : A(s) — B(s) such that

h(s)(A(f)(a1, ..., an)) = B(f)(h(s1)(a1), .., h(sn)(an))

for every symbol f:s1 x ... x s, — s and a; € A(s;).

6 /26

Review of Algebraic Theories (Key Properties)

» Entailment is semi-decidable.

» Deduction is sound and complete.

» Every theory T'h admits a term model M:

» M (s) is the set of ground terms of sort s, modulo Th .
» M is initial: for every M’ |= Th, there is a unique M — M’.
» Construction of M is semi-computable.

v

Algebraic theories are presentations of cartesian multi-categories.

7/26

Algebraic Databases (Typesides)

» A typeside Ty is an algebraic theory.

» Its sorts are called types.
» It represents an ambient computational context.

26

Example typeside

» Types
Nat, Char, String

» Symbols
zero: Nat, succ: Nat — Nat, +: Nat x Nat — Nat
A B,C,...,Z: Char
nil: String, cons: Char x String — String

» Equations
V. +(zero,z) =z

Va,y. +(succ(x),y)= succ(+(x,y))

9/26

Algebraic Databases (Schemas)

» A typeside Ty is an algebraic theory.

>

>

Its sorts are called types.
It represents an ambient computational context.

» A schema S on Ty extends Ty with

>

>

>

>

new sorts (called entities).
new symbols att: entity — type (called attributes).

new symbols fk: entity — entity (called foreign keys).

new unary equations of the form Vuv: entity. e = €.

10/26

Example Schema

» Entities
Emp, Dept

» Foreign Keys
manager: Emp — Emp, works: Emp — Dept, secretary: Dept — Emp

Attributes

v

dname: Dept — String, ename: Emp — String

» Equations
Ve. works(manager(e)) = works(e)

Vd. works(secretary(d)) = d

Ve. manager(manager(e)) = manager(e)

11/26

Algebraic Databases (Instances)

» A typeside Ty is an algebraic theory.

> Its sorts are called types.
» It represents an ambient computational context.

» A schema S on Ty extends Ty with
» new sorts (called entities).
» new symbols att: entity — type (called attributes).
» new symbols fk: entity — entity (called foreign keys).
» new unary equations of the form Vv: entity. e = ¢’.

» An instance I on S extends S with

» new symbols gen: entity (called generators).
» new symbols sk: type (called labelled nulls / skolem variables).
> new non-quantified equations.

12/26

Example Instance

» Generators
a,b,c: Emp, m;s: Dept

» Equations
ename(a) = Al, ename(c) = Carl, dname(m) = Math
works(a) = m, works(b) = m, secretary(s) = c, secretary(m) =b

Abbreviated cons(A, cons(l, nil)) as Al, etc.

13 /26

Instance Semantics is its Initial Term Model

Dept
ID dname | secretary
m Math b
s || dname(s) c
Emp
ID ename manager | works
a Al mgr(a) m
b ename(b) mgr(b) m
c Carl mgr(c) s
mgr(a) || ename(mgr(a)) | mgr(a) m
mgr(b) || ename(mgr(b)) | mgr(b) m
mgr(c) || ename(mgr(c)) | mgr(c) s

14 /26

Functorial Data Migration

» Let S,T be two schemas on typeside T'y. A morphism F': S — T is a
morphism of theories that is the identity on T'y.
» The schemas on T’y form a category.

» Let I, J be two instances on schema S. A morphism h: I — J is a
morphism of theories that is the identity on S.
» The instances on S form a category, S-inst.

» A morphism F': § — T induces adjoint data migration functors
» Yp: S-inst— T-inst (like outer disjoint union then quotient)
defined as substitution
» Ap: T-inst— S-inst (like project)
Yr AR
» IIp: S-inst— T-inst (like join)
Ap —1Ig

Note: adjoints are only defined up to unique isomorphism.

15/26

Graphical (E/R Diagram) Notation for Schemas

manager
works Dept
[]
/ \ secretary
flrst Iast name
O
Emp.manager.works = Emp.works Dept.secretary.works = Dept

Emp.manager.manager = Emp.manager

16 /26

A (Project)

Name

Salary
O

AN

Name

Salary
o

Age Age
o o
N1 N2 N
ID || Name | Salary ID || Age ID || Name | Salary | Age
1 Alice $100 4 20 | SE Alice $100 20
2 Bob $250 5 20 b Bob $250 20
3 Sue $300 6 30 c Sue $300 30

In these examples we show instances as term models rather than theories.
IDs are meaningless — instances are only defined up to isomorphism.

17 /26

IT (Join)

AN

Name
O

Salary
O

Age

[=4

AN

Name
o

Salary
o

Age

ID || Name | Salary | Age

a Alice $100 20

N1 N2 b Alice $100 20

ID || Name | Salary ID || Age c Alice $100 30
T || Alice | $100 || 4 || 20 | =5[d || Bob | $250 | 20
2 Bob $250 5 20 e Bob $250 20
3 Sue $300 6 30 f Bob $250 30
g Sue $300 20

h Sue $300 20

i Sue $300 30

18 /26

Y. (Outer Disjoint Union then Quotient)

(nully abbreviates Age(a), etc.)

Name Name
O O
Salary Salary
O O
Nl/ N2 N/
[] [] []
Age Age
O O
N
7 o [AT
ID || Name | Salary || ID || Age a ce i
- e b Bob $250 | nulls
1 Alice $100 4 20 | — S $300 7
2 |[Bob | $250 || 5 || 20 ; nu‘ﬁ — 7“2‘03
4 5
3 Sue $300 6 30 < walls ol 0
f nullg nullg 30

19/26

Foreign keys

Name
O

[=4

Name
o

Salary
o

AN

Age

N1 N2
ID || Name | Salary | f ID || Age
1 Alice $100 | 4 4 20
2 Bob $250 | 5 5 20
3 Sue $300 | 6 6 30

AR

Ip,2p
—_—

ID || Name | Salary | Age
a Alice $100 20
b Bob $250 20
c Sue $300 30

26

Expressivity of A, X, 11
» Data migrations of the form
EF o AG o HH

can express any SPCU relational algebra query under bag semantics.
SPCU under set semantics can express the data migration when

» Fis a discrete op-fibration (ensures union compatibility).

» H is a surjection on attributes (ensures domain independence).

» All theories denote finite categories (ensures computability).

» The typeside has no function symbols (ensures atomicity of data).

» We extend SPCU with a key generator (need fresh constants).

» Y has similar semantics to an operation called the chase which is the
basis of relational data integration.

» Migrations of the form Agr oIlg and X o Ap can be specified using
for /where/return syntax.

21/26

Pivot (Instance < Schema)

last

101 Afirst _ Al Akin
[) []
hame works
last
Math 102 first Bob Bo
[) []
name works
Omgr
last
works 103 frer Carl ™ Cork
mgr
Emp
Dept
ID mgr | works | first | last D er:1ame
101 103 ql0 Al Akin 10 TS
102 || 102 | x02 | Bob | Bo 202 o
103 103 ql0 Carl | Cork

22/26

QINL vs LINQ

» Functorial data migration is a QINL (i.e., co-LINQ) query mechanism.

» LINQ enriches programs with (schemas, queries and instances).
» Collections are terms

Employee: Set Int manager: Set (Int x Int)

» e: Employee is not a judgment.
» There is a term €: Int x Set Int — Bool.

» QINL enriches (schemas, queries and instances) with programs.
» Collections are types

Employee: Type manager: Employee — Employee

> e: Employee is a judgment.
» There is not a term €: Employee x Type — Bool.

» LINQ is more popular, but QINL is common in Coq, Agda, etc.

23 /26

QINL is “one level up” from LINQ
» LINQ

» Schemas are collection types over a base type theory
Set (Int x String)

» Instances are terms
{(1,CS)} v {(2, Math)}
» Data migrations are functions

m1: Set (Int x String) — Set Int

» QINL

» Schemas are type theories over a base type theory
Dept, name: Dept — String
» Instances are term models
dy,dz: Dept, name(d;) = CS, name(dy) = Math
» Data migrations are functors

Apept: (Dept, name: Dept — String) -inst — (Dept)-inst

24 /26

FQL Demo

» The FQL IDE is an open-source graphical schema mapping and data
integration tool available at

categoricaldata.net/fql.html

» It is being commercialized by Categorical Informatics, a recent MIT
spin out
catinf.com

25 /26

Conclusion

» | presented an expressive formalism for specifying and manipulating
databases using algebraic theories.

» Many concepts from algebraic specification appear in this work. Some
not mentioned:

» Conservative extensions / consistency
» |nstitutions, limits, colimits, etc
» Automated theorem proving

» Looking for feedback, users, and collaborators.

catinf.com

26 /26

