Algebraic Databases

Patrick Schultz, David Spivak, Christina Vasilakopoulou Department of Mathematics Massachusetts Institute of Technology

> Ryan Wisnesky Categorical Informatics

> > NEPLS October 7, 2016

> > > \mathcal{C}_i

Outline

- In the early 2010s, Spivak proposed using the *functorial data model* (FDM) to solve data migration problems.
 - Schemas are categories, instances are set-valued functors.
 - A precursor to the FDM was proposed by Rosebrugh in the early 2000s.
- It turns out the FDM can be understood as algebraic specification.
- Talk goal: describe the FDM using algebraic terminology.
- The FDM is being commercialized in a data integration tool by an MIT spin-out company. Both the lab and the company are looking for collaborators. (catinf.com)
- Sponsored by ONR grant N000141310260, AFOSR grant FA9550-14-1-0031, NIST SBIR grants 70NANB15H290 and 70NANB16H178, and NSF I-Corps grant 1611699.

Review of Algebraic Theories (Signatures, Terms)

A signature Sig consists of a set of sorts and a set of function symbols

 $f: s_1 \times \ldots \times s_n \to s$

A context Γ over signature Sig assigns variables to sorts

 $v_1: s_1, \ldots, v_k: s_k$

A *term* of sort s in context Γ is either

- a variable v, if $v : s \in \Gamma$
- a function application $f(t_1, \ldots, t_n)$, if $f: s_1 \times \ldots \times s_n \to s$ and each t_i is a term of sort s_i

We write $t[v \mapsto t']$ for the substitution of term t' for variable v in term t.

Review of Algebraic Theories (Theories, Entailment)

Let Sig be a signature. A (universally quantified) equation over Sig is a formula Γ . t = t' : s, where t, t' have sort s in context Γ . A set of equations Th is a *theory*. The entailment relation $Th \vdash$ between equations is defined by inference rules

$$\frac{\Gamma. t = t': s}{\Gamma. t = t: s} \qquad \frac{\Gamma. t = t': s}{\Gamma. t' = t: s} \qquad \frac{\Gamma. t = t': s}{\Gamma. t = t'': s}$$
$$\frac{\Gamma. t = t': s}{\Gamma. v: s'. t = t': s} \qquad \frac{\Gamma. v: s. t = t': s'}{\Gamma. t = t'': s}$$

Review of Algebraic Theories (Theory Morphisms)

- A morphism of signatures $F: Sig_1 \rightarrow Sig_2$ consists of
 - a function from sorts in Sig_1 to sorts in Sig_2
 - a function from symbols $f: s_1 \times \ldots \times s_n \to s$ in Sig_1 to (open) terms $F(s_1) \times \ldots \times F(s_n) \to F(s)$ in Sig_2
- A morphism of theories $F: Th_1 \rightarrow Th_2$ is a morphism of signatures that preserves provable equality of terms

$$Th_1 \vdash v_1: s_1, \ldots, v_n: s_n. t_1 = t_2: s$$

implies

$$Th_2 \vdash v_1 \colon F(s_1), \ \dots, \ v_n \colon F(s_n). \ F(t_1) = F(t_2) \colon F(s)$$

Review of Algebraic Theories (Models)

- An algebra A over signature Sig consists of
 - a set A(s) for each sort s
 - a function $A(f): A(s_1) \times \ldots \times A(s_k) \to A(s)$ for each symbol $f: s_1 \times \ldots \times s_k \to s$
- An environment η for context Γ takes each $v : s \in \Gamma$ to some A(s).
- We write $A[t]\eta$ for the meaning of term t in environment η .
- A is a model of a theory Th (Th ⊨ A) when Th ⊢ Γ. t = t' : s implies A[[t]]η = A[[t']]η for all terms t, t' and environments η.
- A morphism of Sig-algebras $h:A\to B$ is a family of functions $h(s):A(s)\to B(s)$ such that

$$h(s)(A(f)(a_1,...,a_n)) = B(f)(h(s_1)(a_1),...,h(s_n)(a_n))$$

for every symbol $f : s_1 \times \ldots \times s_n \rightarrow s$ and $a_i \in A(s_i)$.

Review of Algebraic Theories (Key Properties)

- Entailment is semi-decidable.
- Deduction is sound and complete.
- Every theory *Th* admits a *term model M*:
 - M(s) is the set of ground terms of sort s, modulo $Th \vdash$.
 - *M* is *initial*: for every $M' \models Th$, there is a unique $M \rightarrow M'$.
 - Construction of M is semi-computable.
- Algebraic theories are presentations of cartesian multi-categories.

Algebraic Databases (Typesides)

- A *typeside* Ty is an algebraic theory.
 - Its sorts are called types.
 - It represents an ambient computational context.

Example typeside

Types

Nat, Char, String

Symbols

zero: Nat, succ: Nat \rightarrow Nat, +: Nat \times Nat \rightarrow Nat A, B, C, ..., Z : Char nil: String, cons: Char \times String \rightarrow String \blacktriangleright Equations

$$\forall x. +(\mathsf{zero}, x) = x \\ \forall x, y. +(\mathsf{succ}(x), y) = \mathsf{succ}(+(x, y))$$

Algebraic Databases (Schemas)

- A *typeside* Ty is an algebraic theory.
 - Its sorts are called types.
 - It represents an ambient computational context.
- A schema S on Ty extends Ty with
 - new sorts (called *entities*).
 - new symbols $att: entity \rightarrow type$ (called *attributes*).
 - new symbols $fk: entity \rightarrow entity$ (called *foreign keys*).
 - new unary equations of the form $\forall v : entity. e = e'$.

Example Schema

Entities

Emp, Dept

Foreign Keys

 $\mathsf{manager}\colon\mathsf{Emp}\to\mathsf{Emp},\ \mathsf{works}\colon\mathsf{Emp}\to\mathsf{Dept},\ \mathsf{secretary}\colon\mathsf{Dept}\to\mathsf{Emp}$

Attributes

dname: Dept \rightarrow String, ename: Emp \rightarrow String

Equations

$$\begin{aligned} \forall e. \ \mathsf{works}(\mathsf{manager}(e)) &= \mathsf{works}(e) \\ \forall d. \ \mathsf{works}(\mathsf{secretary}(d)) &= d \\ \forall e. \ \mathsf{manager}(\mathsf{manager}(e)) &= \mathsf{manager}(e) \end{aligned}$$

Algebraic Databases (Instances)

- A *typeside* Ty is an algebraic theory.
 - Its sorts are called types.
 - It represents an ambient computational context.
- A schema S on Ty extends Ty with
 - new sorts (called *entities*).
 - new symbols $att: entity \rightarrow type$ (called *attributes*).
 - new symbols $fk: entity \rightarrow entity$ (called *foreign keys*).
 - new unary equations of the form $\forall v : entity. e = e'$.
- An *instance* I on S extends S with
 - new symbols gen: entity (called generators).
 - new symbols sk: type (called labelled nulls / skolem variables).
 - new non-quantified equations.

Example Instance

Generators

a, b, c: Emp, m, s: Dept

Equations

$$\label{eq:ename} \begin{split} \mathsf{ename}(a) &= \mathsf{AI}, \ \mathsf{ename}(c) = \mathsf{CarI}, \ \mathsf{dname}(m) = \mathsf{Math} \\ \mathsf{works}(a) &= \mathsf{m}, \ \mathsf{works}(b) = \mathsf{m}, \ \mathsf{secretary}(s) = \mathsf{c}, \ \mathsf{secretary}(m) = \mathsf{b} \end{split}$$

Abbreviated cons(A, cons(I, nil)) as AI, etc.

Instance Semantics is its Initial Term Model

Dept					
ID	dname	secretary			
m	Math	b			
S	dname(s)	С			

	Emp							
ID	ename	manager	works					
а	AI	mgr(a)	m					
b	ename(b)	mgr(b)	m					
С	Carl	mgr(c)	S					
mgr(a)	ename(mgr(a))	mgr(a)	m					
mgr(b)	ename(mgr(b))	mgr(b)	m					
mgr(c)	ename(mgr(c))	mgr(c)	S					

Functorial Data Migration

- Let S, T be two schemas on typeside Ty. A morphism $F: S \to T$ is a morphism of theories **that is the identity on** Ty.
 - The schemas on Ty form a category.
- Let I, J be two instances on schema S. A morphism $h: I \to J$ is a morphism of theories **that is the identity on** S.
 - The instances on S form a category, S-inst.
- A morphism $F: S \rightarrow T$ induces adjoint data migration functors
 - $\Sigma_F : S$ -inst $\rightarrow T$ -inst (like outer disjoint union then quotient)

defined as substitution

• $\Delta_F : T \text{-inst} \rightarrow S \text{-inst}$ (like project)

$$\Sigma_F \dashv \Delta_F$$

• $\Pi_F : S \text{-inst} \to T \text{-inst}$ (like join)

$$\Delta_F \dashv \Pi_F$$

Note: adjoints are only defined up to unique isomorphism.

Graphical (E/R Diagram) Notation for Schemas

 ${\sf Emp.manager.works} = {\sf Emp.works} \qquad {\sf Dept.secretary.works} = {\sf Dept}$

Emp.manager.manager = Emp.manager

Δ (Project)

N1				N2				N	
ID	Name	Salary	ID	Age		ID	Name	Salary	Age
1	Alice	\$100	4	20	$\leftarrow \Delta_F$	а	Alice	\$100	20
2	Bob	\$250	5	20		b	Bob	\$250	20
3	Sue	\$300	6	30]	С	Sue	\$300	30

In these examples we show instances as term models rather than theories. IDs are meaningless – instances are only defined up to isomorphism.

$\Pi \text{ (Join)}$

N1						
ID	ID Name Sa					
1	Alice	\$100				
2	Bob	\$250				
3	Sue	\$300				

1		
ID	Age	
4	20	$\frac{\Pi_F}{}$
5	20	1
6	30	

			N					
	ID	Name	Salary	Age				
	а	Alice	\$100	20				
	b	Alice	\$100	20				
	с	Alice	\$100	30				
•	d	Bob	\$250	20				
	е	Bob	\$250	20				
	f	Bob	\$250	30				
	g	Sue	\$300	20				
	h	Sue	\$300	20				
	i	Sue	\$300	30				

Σ (Outer Disjoint Union then Quotient)

	N1			N2	1	ID	
ID	Name	Salary		Age		а	
1	Alice	\$100	4	20	$\xrightarrow{\Sigma_F}$	b	
2	Bob	\$250	5	20		с	
3	Sue	\$300	6	30		d	
	1		1				

	N									
	ID	Name	Age							
	а	Alice	\$100	$null_1$						
,	b	Bob	\$250	$null_2$						
	с	Sue	\$300	$null_3$						
	d	$null_4$	$null_5$	20						
	е	$null_6$	$null_7$	20						
	f	$null_8$	$null_9$	30						

 $(null_1 \text{ abbreviates Age}(a), \text{ etc.})$

Foreign keys

	N1	1		١	N2				N	
ID	Name	Salary	f	ID	Age	$^{\Delta_F}$	ID	Name	Salary	Age
1	Alice	\$100	4	4	20	$\xrightarrow{\Pi_F, \mathcal{L}_F}$	а	Alice	\$100	20
2	Bob	\$250	5	5	20		b	Bob	\$250	20
3	Sue	\$300	6	6	30		с	Sue	\$300	30

Expressivity of Δ, Σ, Π

Data migrations of the form

 $\Sigma_F\circ \Delta_G\circ \Pi_H$

can express any SPCU relational algebra query under **bag** semantics. SPCU under **set** semantics can express the data migration when

- ► *F* is a discrete op-fibration (ensures union compatibility).
- *H* is a surjection on attributes (ensures domain independence).
- · All theories denote finite categories (ensures computability).
- The typeside has no function symbols (ensures atomicity of data).
- We extend SPCU with a key generator (need fresh constants).
- Σ_F has similar semantics to an operation called the *chase* which is the basis of relational data integration.
- Migrations of the form $\Delta_F \circ \Pi_G$ and $\Sigma_G \circ \Delta_F$ can be specified using for/where/return syntax.

Pivot (Instance \Leftrightarrow Schema)

			Emp		
	last	first	works	mgr	ID
a10	Akin	AI	q10	103	101
410 v02	Bo	Bob	×02	102	102
X02	Cork	Carl	q10	103	103

Dept			
ID	name		
q10	CS		
x02	Math		

QINL vs LINQ

- Functorial data migration is a *QINL* (i.e., co-LINQ) query mechanism.
- LINQ enriches programs with (schemas, queries and instances).
 - Collections are terms

Employee: Set Int manager: Set (Int \times Int)

- e: Employee *is not* a judgment.
- There is a term \in : Int \times Set Int \rightarrow Bool.
- QINL enriches (schemas, queries and instances) with programs.
 - Collections are types

 $\mathsf{Employee} \colon \mathsf{Type} \quad \mathsf{manager} \colon \mathsf{Employee} \to \mathsf{Employee}$

- e: Employee *is* a judgment.
- There is not a term \in : Employee \times Type \rightarrow Bool.
- LINQ is more popular, but QINL is common in Coq, Agda, etc.

QINL is "one level up" from LINQ

- LINQ
 - Schemas are collection types over a base type theory

 $\mathsf{Set}\;(\mathsf{Int}\times\mathsf{String})$

Instances are terms

 $\{(1,\mathsf{CS})\}\cup\{(2,\mathsf{Math})\}$

Data migrations are functions

```
\pi_1 \colon \mathsf{Set} \ (\mathsf{Int} \times \mathsf{String}) \to \mathsf{Set} \ \mathsf{Int}
```

- QINL
 - Schemas are type theories over a base type theory

Dept, name: Dept \rightarrow String

Instances are term models

 $\mathsf{d}_1,\mathsf{d}_2\colon\mathsf{Dept},\ \mathsf{name}(\mathsf{d}_1)=\mathsf{CS},\ \mathsf{name}(\mathsf{d}_2)=\mathsf{Math}$

Data migrations are functors

 $\Delta_{\mathsf{Dept}} \colon (\mathsf{Dept},\mathsf{name}\colon\mathsf{Dept}\to\mathsf{String})\operatorname{-}\mathsf{inst}\ \to\ (\mathsf{Dept})\operatorname{-}\mathsf{inst}$

FQL Demo

 The FQL IDE is an open-source graphical schema mapping and data integration tool available at

categoricaldata.net/fql.html

 It is being commercialized by Categorical Informatics, a recent MIT spin out

catinf.com

Conclusion

- I presented an expressive formalism for specifying and manipulating databases using algebraic theories.
- Many concepts from algebraic specification appear in this work. Some not mentioned:
 - Conservative extensions / consistency
 - Institutions, limits, colimits, etc
 - Automated theorem proving
- Looking for feedback, users, and collaborators.

catinf.com