
Categorical databases

David I. Spivak

dspivak@math.mit.edu

Mathematics Department
Massachusetts Institute of Technology

Presented on 2014/02/28

at Oracle

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 1 / 1

dspivak@math.mit.edu

Introduction Purpose of the talk

Purpose of the talk

There is an fundamental connection between databases and
categories.

Category theory can simplify how we think about and use databases.

We can clearly see all the working parts and how they fit together.

Powerful theorems can be brought to bear on classical DB problems.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 2 / 1

Introduction The pros and cons of relational databases

The pros and cons of relational databases

Relational databases are reliable, scalable, and popular.

They are provably reliable to the extent that they strictly adhere to
the underlying mathematics.

Make a distinction between

the system you know and love, vs.
the relational model, as a mathematical foundation for this system.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 3 / 1

Introduction The pros and cons of relational databases

You’re not really using the relational model.

Current implementations have departed from the strict relational
formalism:

Tables may not be relational (duplicates, e.g from a query).
Nulls (and labeled nulls) are commonly used.

The theory of relations (150 years old) is not adequate to
mathematically describe modern DBMS.

The relational model does not offer guidance for schema mappings
and data migration.

Databases have been intuitively moving toward what’s best described
with a more modern mathematical foundation.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 4 / 1

Introduction The pros and cons of relational databases

Category theory gives better description

Category theory (CT) does a better job of describing what’s already
being done in DBMS.

Puts functional dependencies and foreign keys front and center.
Allows non-relational tables (e.g. duplicates in a query).
Labeled nulls and semi-structured data fit in neatly.

All columns of a table are the same type of thing. It’s simpler.

CT offers guidance for schema mapping and data migration.

It offers the opportunity to deeply integrate programming and data.

Theorems within category theory, and links to other branches of math
(e.g. topology), can be used in databases.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 5 / 1

Introduction What is category theory?

What is category theory?

Since its invention in the early 1940s, category theory has
revolutionized math.

It’s like set theory and logic, except less floppy, more principles-based.

Category theory has been proposed as a new foundation for
mathematics (to replace set theory).

It was invented to build bridges between disparate branches of math
by distilling the essence of mathematical structure.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 6 / 1

Introduction What is category theory?

Branching out

Category theory naturally fosters connections between disparate fields.

It has branched out of math and into physics, linguistics, and
materials science.

It has had much success in the theory of programming languages.

The pure category-theoretic concept of monads has vastly extended
the reach of functional programming.

Can category theory improve how we think about databases?

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 7 / 1

Introduction The basic idea

Schemas are categories, categories are schemas

The connection between databases and categories is simple and
strong.

Reason: categories and database schemas do the same thing.
A schema gives a framework for modeling a situation;

Tables
Attributes

This is precisely what a category does.

Objects
Arrows.

They both model how entities within a given context interact.

The functorial data model is what you get when you demand:

Schema = Category.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 8 / 1

Introduction The basic idea

The basic idea

In the functorial data model, a database schema is a special kind of
entity-relationship (ER) diagram.

Emp
‚

worksIn //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

Emp.manager.worksIn “ Emp.worksIn Dept.secretary.worksIn “ Dept

Emp

Emp mgr works first last
101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

Dept sec name
q10 102 CS

x02 101 Math

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 9 / 1

Introduction The basic idea

The basic idea, continued

Emp
‚

worksIn //

manager

��
Dept
‚

secretary
oo

first
˝

last
˝

name
˝

Each node represents an entity set.

Each entity is identified by a globally unique ID and has some
attributes (strings, integers, etc).

Each directed edge represents a foreign key.

Data integrity constraints are path equalities.

Instances are always and only considered up to isomorphism of IDs
and equality of attributes.

No nulls.

We usually think of each attribute and edge as a binary table.
David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 10 / 1

Introduction Outline

Outline

The functorial data model can be studied with the regular tools of
relational database theory.

The functorial data model can also be studied with category theory.

Category theory reveals many additional useful properties of functorial
schemas and instances that are invisible to traditional database theory.

The purpose of this talk is to demonstrate these properties without
getting into the mathematics of category theory.

Everything in this talk has been implemented by Ryan Wisnesky.

Download the FQL IDE from: http://wisnesky.net/fql.html

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 11 / 1

http://wisnesky.net/fql.html

Functorial data migration

Schema mappings and associated operations

A schema mapping F : S Ñ T is a constraint-respecting mapping:

nodespSq Ñ nodespT q edgespSq Ñ pathspT q

and it induces three data migration operations:

∆F : T ´ inst Ñ S ´ inst (like projection)
ΣF : S ´ inst Ñ T ´ inst (like union)
ΠF : S ´ inst Ñ T ´ inst (like join)

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 12 / 1

Functorial data migration Demos

Demos

I’ll give some examples and then demo them in the FQL IDE.

In each case, I’ll show a couple FQL schemas S,T and an FQL
mapping F : S Ñ T between them.

I’ll talk about what the three data migration functors, ∆F ,ΣF ,ΠF do
in each case.
I’ll show some EDs (embedded dependencies) that would have the
same result under the chase.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 13 / 1

Functorial data migration Demos

Example 1

S :“

a1
˝

n1
‚

a2
˝

n2
‚

F
Ñ

a
˝

n
‚ :“ T

∆F : T–Inst Ñ S–Inst copies n into n1 and n2, and a into a1 and a2.

apx , yq Ñ a1px , yq ^ a2px , yq

ΠF : S–Inst Ñ T–Inst joins a1 and a2 into a, creating a fresh ID for
each tuple.

a1px , yq ^ a2px 1, yq Ñ Dz , apz , yq

ΣF : S–Inst Ñ T–Inst unions a1 and a2 into a.

a1px , yq Ñ apx , yq a2px , yq Ñ apx , yq

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 14 / 1

Functorial data migration Demos

Demo Example 1 in FQL IDE

schema S = {nodes n1, n2; attributes a1 : n1 -> string, a2 : n2 -> string;

arrows; equations; }

schema T = {nodes n; attributes a : n -> string; arrows; equations;}

mapping F = {

nodes n1 -> n, n2 -> n;

attributes a1 -> a, a2 -> a;

arrows; } : S -> T

instance I = {

nodes n1 -> {0,1,2}, n2 -> {3,4};

attributes a1 -> {(0,alpha),(1,beta),(2,gamma)},

a2 -> {(3,alpha),(4,upsilon)};

arrows; } : S

instance pi_F_I = pi F I

instance sigma_F_I = sigma F I

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 15 / 1

Functorial data migration Demos

Example 2 (adds an edge to Example 1)

S :“

a1
˝

n1
‚

f��
a2
˝

n2
‚

F
Ñ

a
˝

n
‚ :“ T

∆F : T–Inst Ñ S–Inst puts the identity function into f:

apx , yq Ñ a1px , yq ^ a2px , yq ^ fpx , xq

ΠF : S–Inst Ñ T–Inst will join a1, a2, and f:

a1px , yq ^ a2px 1, yq ^ fpx , x 1q Ñ Dz , apz , yq

ΣF : S–Inst Ñ T–Inst will union a1 and a2 into a, requiring each ID
x in n1 to have the same a attribute as fpxq in n2.

a1px , yq Ñ apx , yq a2px , yq Ñ apx , yq fpx , yq Ñ Dz , apx , zq^apy , zq

Consequently, it is possible for ΣF to fail if it must equate two
distinct constants (like “alice” and “bob”).
David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 16 / 1

Functorial data migration Demos

Demo Example 2 in FQL IDE

schema S = {nodes n1, n2; attributes a1 : n1 -> string, a2 : n2 -> string;

arrows f : n1 -> n2; equations; }

schema T = {nodes n; attributes a : n -> string; arrows; equations;}

mapping F = {

nodes n1 -> n, n2 -> n;

attributes a1 -> a, a2 -> a;

arrows f -> n; } : S -> T

instance I = {

nodes n1 -> {0,1,2}, n2 -> {3,4};

attributes a1 -> {(0,alpha),(1,alpha),(2,alpha)},

a2 -> {(3,alpha),(4,upsilon)};

arrows f -> {(0,3),(1,3),(2,3)}; } : S

instance pi_F_I = pi F I

instance sigma_F_I = sigma F I

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 17 / 1

Functorial data migration Demos

Example 3

S :“ Emp
‚

mgr

�� F
Ñ

SelfMgr
‚ :“ T

ΠF will migrate into SelfMgr only those Emps that are their own mgr.

ΣF will migrate into SelfMgr the “management groups” of Emp, i.e.
equivalence classes of Emps modulo the equivalence relation generated
by mgr.

Key point of the examples: Functorial data migration operators are
very expressive.

Note that none of these examples used path equality constraints.
We can be even more expressive if we employ them.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 18 / 1

FQL FQL - A Functorial Query Language

FQL - A Functorial Query Language

Functorial data migrations have a useful normal form:

ΣF ˝ ΠF 1 ˝∆F2

Caveat: F must obey a restriction that (roughly) it only takes unions
of tables that are “union compatible.”

We call data migrations above the above form FQL queries.

Analogously, unions of conjunctive queries are a useful normal form
for relational algebra.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 19 / 1

FQL FQL - A Functorial Query Language

Key results:

FQL queries can all be written in the following form:

ΣF ˝ ΠF 1 ˝∆F2

FQL queries are closed under composition.

Meaning we can implement compositions without materializing
intermediate results.

Unions of conjunctive queries can be implemented in FQL.

Natively it has bag semantics, which can be useful.
One can also obtain set semantics, after some simple post-processing.

Every FQL query can be implemented as a union of conjunctive
queries under set semantics

Note that we need an operation for creating globally unique IDs (e.g.,
using SQL auto-generated row IDs).

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 20 / 1

FQL FQL to SQL

Demo - People

As you can see, the FQL IDE generates SQL, displayed at the
bottom.

Note that the FQL IDE is executing that SQL via JDBC on a 3rd-party
SQL engine.

We can also see an operation category theory produces for free, the
category of elements.

This operation is interesting because it converts any instance to a
schema.
Time permitting, I’ll discuss this at the end of the talk.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 21 / 1

FQL Demo - RA to FQL

Demo - RA to FQL

Let’s look at how to translate unions of conjunctive queries (SPCU)
to FQL.

The SELECT and FROM clauses are ∆, which gathers the required
tables.
the WHERE clause is Π, which joins.
the UNION clause (bag semantics) is Σ, which takes unions.
(For set semantics, we post-process with something called
RELATIONALIZE.)

Show the active domain, and remark that it is expensive to compute.

We can also translate SQL schemas to FQL

Each table must have a single primary key column.
Any number of foreign key constraints.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 22 / 1

FQL Comparing FQL and SQL

FQL vs SQL

Since FQL compiles to SQL, why not just write in SQL?

FQL query results are entire databases, complete with foreign keys.
SQL only computes one table at a time.

With FQL, output databases are guaranteed to obey their
path-equality constraints.

One can write SQL queries that do not satisfy the necessary
constraints.
FQL uses the foreign-key architecture of the target schema as part of
its query semantics.

Since SQL compiles to FQL, why not just write in FQL?

Currently, schemas and instances imported from SQL are not
appropriately native to FQL.

We saw that we can compute unions of conjunctive queries, so it’s not
horrible.
But to get the correct behavior, they are encoded using an expensive
“active domain” construction that is not feasible in practice.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 23 / 1

FQL FQL and Data Exchange

FQL and Data Exchange

When the F in ΣF is not a “discrete op-fibration”, ΣF cannot be
computed by SQL.

Key result: it can be computed by chasing a set of embedded
dependencies.

The semantics of such ΣF is similar to that of Clio or other data
exchange systems, but

ΣF has better properties (e.g., closure under composition)
ΣF is more powerful (e.g., can compute connected components of a
graph)

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 24 / 1

FQL FQL and Data Exchange

Demo: Data Exchange

I will demo an example in which we union along foreign keys.

Amphibians has a foreign key to land animals and to water animals.
We add a new table (animals) and a new path equation.
FQL generates some EDs.
We get the right number of animals (7).
Clio computes 9 animals: it ignores the path equality constraint,
because it only handles TGDs.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 25 / 1

FQL How’s the time?

How’s the time?

Shall we skip to the summary now, or keep going with RDF?

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 26 / 1

FQL to RDF

FQL to RDF

Category theory has an operation for converting any instance into a
schema.

Since all schemas are graphs, what graph do you get?
Answer: the RDF graph.

We have FQL emitting OWL and RDF.

Functorial schemas (without path equations) can be output as OWL.
Every functorial instance is naturally encoded as RDF.
And of course, the RDF is verified against its OWL schema.

Demo: Employees example

Note the RDF and OWL output.
Note the category of elements.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 27 / 1

FQL to RDF A theorem of category theory

A theorem of category theory

Given an RDF triple store X , we can pull off all the labels and just
get the graph.

Recall that given an FQL schema and instance, you can produce an
RDF graph.

Question: what FQL schemas and instances produce graph X?

Is there a smallest schema with an instance that gives X?

Theorem of category theory:

No, in general there is no smallest schema for X .

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 28 / 1

FQL to RDF A theorem of category theory

Interpretation and editorial

So there’s no smallest schema that produces a given RDF triple store.

What does this mean?

RDF is unstructured in that it can arise from many different relational
schemas.
There is no “best perspective” on RDF data.

Editorial: “Don’t move to schema-less, move to schema-more.”

Coined by my colleague at Johnson & Johnson in response to NoSQL.
With categorical databases, it’s easy to create schemas and functors
relating them.
We don’t need fewer schemas; we need to lower the barrier to creating
and relating schemas.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 29 / 1

Conclusion Summary

Summary

By restricting to functorial schemas and instances, we gain many
useful properties:

Schemas

are ER diagrams
have data integrity constraints built-in

Data migrations

are weak inverses to each other
operate on entire databases
preserve constraints
can implement unions of conjunctive queries
are closed under composition (exception: “special Σ”)
are implementable in SQL (exception: “special Σ”)

All these properties were discovered through category theory.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 30 / 1

Conclusion Status

Status

Current work:

The view-update problem for FQL.
Additional programming constructs for FQL (e.g., exponentials).

Future work:

Integrating FQL with a general-purpose programming language.
A “native”, non-SQL implementation of FQL.
Grouping, aggregation, nesting, difference, nulls.
Optimization.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 31 / 1

Conclusion Thanks

Thanks

Thanks for inviting me to speak!

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 32 / 1

Appendix Programming in FQL

Programming in FQL

The functorial data model admits many useful operations on schemas
and mappings: products, co-products, etc.

In fact, there is enough structure to interpret the simply-typed
λ-calculus (STLC).

Key result: every type in the STLC denotes a schema, and every
(open) term denotes a mapping.

For each schema S , the functorial data model admits many useful
operations on S-instances and S-homomorphisms: products,
co-products, etc.

In fact, there is enough structure to interpret higher-order logic
(HOL).

Key result: every type in HOL denotes an S-instance, and every (open)
term denotes an S-homomorphism.

Show FQL products and co-products example.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 33 / 1

Appendix SQL as FQL

SQL as FQL – the encoding

We can always encode arbitrary relational databases as functorial
instances using an explicit active domain construction. Consider a
relational schema with two relations Rpc1, . . . , cnq and R 1pc 11, . . . , c

1
n1q

R
‚

c1
**

¨¨¨

cn

��

R 1

‚c 1
n1

��
¨¨¨

c 1
1ssD

‚

A
˝

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 34 / 1

Appendix SQL as FQL

SQL as FQL – Projection

Let R be a table. We can express πi1,...,ikR using ∆F

πR
‚

i1

��
¨¨¨ ik

��D
‚

F
ÝÝÝÑ

R
‚

c1

&&

c2

��
¨¨¨ cn

��D
‚

This construction is only appropriate for bag semantics because πR
will will have the same number of rows as R.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 35 / 1

Appendix SQL as FQL

SQL as FQL – Selection

Let R be a table. We can express σi“jR using ΠF :

R
‚

c1

**

¨¨¨ ci

��
¨¨¨ cj ¨¨¨

��

cn

ttD
‚

F
ÝÝÝÑ

σR
‚

s

&&

c1

��
¨¨¨ cn

��D
‚

Here F pci q “ F pcjq “ s.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 36 / 1

Appendix SQL as FQL

SQL as FQL – Product

Let R and R 1 be tables. We can express R ˆ R 1 as ΠF

R
‚

c1
**

¨¨¨

cn

��

R 1

‚c 1
n1

��
¨¨¨

c 1
1ssD

‚

F
ÝÝÝÑ

RˆR 1

‚

c1

**

¨¨¨ cn

��
¨¨¨ c 1

1 ¨¨¨

��

c 1
n1

ttD
‚

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 37 / 1

Appendix SQL as FQL

FQL as SQL – implementing the data migration functors

∆ can be implemented with conjunctive queries and ID-generation.

Target node tables are copied from the source. Target edge/attribute
tables are populated by compositions of source edge/attribute tables.
ID-generation only used to restore globally unique ID requirement.

Σ can be implemented with unions of conjunctive queries and
ID-generation.

Algorithm is similar to a “union of ∆s”.

Π can be implemented with conjunctive queries and ID-generation.

The most difficult to implement. Requires computing large “limit”
tables that are similar to “join all’. ID-generation used to create IDs for
the rows in the limit tables.

David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 38 / 1

