Relational Foundations for Functorial
Data Migration

David Spivak, Ryan Wisnesky

Department of Mathematics
Massachusetts Institute of Technology

{dspivak, wisnesky}@math.mit.edu

DBPL
October 27, 2015

Introduction

» In this talk | will describe an equivalence between a fragment of the
relational data model (SPCU queries) and a fragment of the
(extended) functorial data model (FQL queries):

SPCU ~ FQL

» The functorial data model (my name) originated with Rosebrugh et al.

in the late 1990s.
» Schemas are categories, instances are set-valued functors.
» Spivak extends it to solve information integration problems.
» Sponsored by:

» ONR grant N000141310260
» AFOSR grant FA9550-14-1-0031

)

28

Category Theory

» A presentation of a category is a reflexive, directed, labelled,
multi-graph and a set of path equations:

f
N_% M
N =M Nffg—Nfh
it

» A set-valued functor assigns a set to each node and a function to
each edge, such that the equations holds.

N=N M={bill} f(z)=z+1 g(x)=h(x)=>bil VzreN

» Category theory was instrumental in the development of two
extensions to the relational model, both of which inform work on
language-integrated query (LINQ):

» The nested relational model generalizes sets to nested collections
and is inspired by monads.

» Algebraic datatypes implement nested collections using recursion and
are inspired by algebras.

The Functorial Data Model

manager
(I;\:np works Dept
. °

secretary

first
last

Dom
°

Emp.manager.works = Emp.works

Dept.secretary.works = Dept Dom
ID
Al

Emp
Dept i
ID mgr | works | first | last D seip — gklg
101 || 103 | ql0 | Al | Akin °
ql0 || 102 CS Bo
102 102 x02 Bob Bo 02 101 | Math Carl
103 || 103 | q10 | Carl | Cork | L= :
Cork
(&)

Math

28

Convention
» Omit Dom

table, and draw

edges e —¢ epyy, as ® — O :

manager
(;;p works Dept
. .

secretary

first
last
Dom
°
manager
works Dept
°
/ \ secretary

flrst Iast name

28

The Functorial Data Model (abbreviated)

manager
works Dept
[]
/ \ secretary
flrst Iast name
o)
Emp.manager.works = Emp.works Dept.secretary.works = Dept
Emp
Dept
ID mgr | works | first | last D sei:p p—
101 103 ql0 Al Akin 0 102 S
102 || 102 | x02 | Bob | Bo 302 TTEmYT
103 103 ql0 Carl | Cork

6

28

Functorial Data Migration
» A functor F': S — T is a constraint-respecting mapping:
nodes(S) — nodes(T) edges(S) — paths(T')
and it induces three adjoint data migration functors:
» Ap: T-inst — S-inst (like project)
S—LEor 1. Set
Ap(I) i= IoF
» IIp: S-inst — T-inst (like join)
Ap 41lF
» ¥p: S-inst — T-inst (like outer disjoint union then quotient)

YXr-Ap

28

A (Project)

Name
¢}

Salary
o

Age

VN

Name
o

Salary
o

Age

N1 N2
ID || Name | Salary ID || Age ID || Name | Salary | Age
1 Alice $100 4 20 | SE . Alice $100 20
2 Bob $250 5 20 b Bob $250 20
3 Sue $300 6 30 c Sue $300 30

28

IT (Join)

Name Name
o O
Salary Salary
O O
N1 / N2 N /
[[] []
Age Age
O O
ID || Name | Salary | Age
a Alice $100 20
N1 N2 b Alice $100 20
ID Name | Salary ID || Age c Alice $100 30
1 Alice $100 4 20 RN d Bob $250 20
2 Bob $250 5 20 e Bob $250 20
3 Sue $300 6 30 f Bob $250 30
g Sue $300 20
h Sue $300 20
i Sue $300 30

28

Y. (Union)

Name Name
e o
Salary Salary
o o
Nl/ N2 N/
[] [] []
Age Age
S S
N
m v [P T
ID || Name | Salary || ID || Age a lce iy
- Sp b Bob $250 nulls
1 Alice $100 4 20 — S $300 7
2 |[Bob | $250 |[5 || 20 ; nu'ﬁ — 7”2‘03
4 5
3 Sue $300 6 30 . alls walls 20
f nullg nully 30

10/28

Foreign keys

Name
O

[=4

Name
o

Salary
o

AN

Age

N1 N2
ID || Name | Salary | f ID || Age
1 Alice $100 | 4 4 20
2 Bob $250 | 5 5 20
3 Sue $300 | 6 6 30

AR

Ip,2p
—_—

ID || Name | Salary | Age
a Alice $100 20
b Bob $250 20
c Sue $300 30

28

Evaluation of the functorial data model

» Positives:

» The category of categories is bi-cartesian closed (model of the STLC).
» For each category C, the category C-inst is a topos (model of HOL).
» Data integrity constraints (path equations) are built-in to schemas.

» Data migration functors transform entire instances.

» The FDM is expressive enough for many information integration tasks.
» Easy to pivot.

» Negatives:

» Data integrity constraints (in schemas) are limited to path equalities.
» Data migrations lack analog of set-difference.

> No aggregation.

» Data migration functors are hard to program directly.

» Instance isomorphism is too coarse for many integration tasks.

> Many problems about finitely-presented categories are semi-computable:
> Path equivalence
» Generating a category from a presentation

12/28

The Attribute Problem

N
ID || Name | Age | Salary
1 Alice 20 $100
2 Bob 20 $250
3 Sue 30 $300
~ (good)
N
ID || Name | Age | Salary
4 Alice 20 $100
5 Bob 20 $250
6 Sue 30 $300
=~ (bad)
N
ID || Name | Age | Salary
1 Amy 20 $100
2 Bill 20 $250
3 Susan 30 $300

13 /28

Solving the Attribute Problem

» Mark certain edges to leaf nodes as “attributes”.
> In this extension, a schema is a category C, a discrete category Cy, and
a functor Cy — C'. Instances and migrations also generalize.
» Schemas become special ER (entity-relationship) diagrams.
» The FDM takes Cj to be empty.
» The example schema below, which was an abbreviation in the FDM, is a
bona-fide schema in this extension: attributes are first, last, and name.

manager
works Dept
)
secretary
flrst last name
O O

14 /28

Solved Attribute Problem

N
ID || Name | Age | Salary
1 Alice 20 $100
2 Bob 20 $250
3 Sue 30 $300
~ (good)
N
ID || Name | Age | Salary
4 Alice 20 $100
5 Bob 20 $250
6 Sue 30 $300
(good)
N
ID || Name | Age | Salary
1 Amy 20 $100
2 Bill 20 $250
3 Susan 30 $300

15/28

Functorial Data Migration as SPCU

» Theorem: migrations of the form
Yrollgo Ay

» F'is a discrete op-fibration (ensures union compatibility).
» G is a surjection on attributes (ensures domain independence).
» all categories are finite (ensures computability).
» can be implemented using SPCU (select, project, cartesian product
union) and keygen, under set semantics.

» are closed under composition.

16

28

A using SPCU

Given F': S — T and I € T-Inst, define Ap(I) € S—Inst as:
» for each node N in S, the table Ap(N) is I(F(N)).
» for each attribute A in S, the table Ap(A) is I(F(A)).

» for each edge e : X — Y in .S mapping to a path
F(e): F(X) — F(Y) in T, compose I(F(e)) to obtain Ag(e).

S—F>T—I>Set

Ap(I) := IoF

17/28

> using SPCU

Gven F' : S — T a discrete op-fibration, a S-instance I, we define
Yr(I) € T-Inst as

» for each node N in T, the table ¥ (V) is the union of the node
tables in [that F" maps to N.

» for each attribute A in T, the table ¥5(A) is the union of the
attribute tables in [that ' maps to A.

» Let e: X — Y be an edge in T. We know that for each ce F~1(X)
there is at least one path p. in S such that F'(p.) = e. Compose p. to
a single binary table, and define X (e) to be the union over all such c.
The choice of p. will not matter.

18 /28

Discrete Op-Fibrations / Union Compatibility

by g1 ay hy c1
° . .
b 92 az ho co
° . °
X a5 o

. °

h3
cq
.
| F
B G A H C
. . °

19/28

IT using SPCU

Given F': S — T with S finite and a S-instance I, we define
IIp(I) € T-Inst as:

» too difficult to describe in a presentation.

» Intuitively, IT is a “join all”

20 /28

SPCU as Functorial Data Migration

» Theorem : SPCU (bags) can be implemented using A, %, I1.

» Theorem : SPCU (sets) can be implemented using A, 3, I1, dedup,
where dedupr : T-Inst — T-Inst equates |Ds which cannot be
distinguished along any attribute path.

» We must encode relational schemas, for example, R(cy,...,c,) and

R'(c},...,c,) becomes:
R ;R
) K{cn// .
Cl\D/c’l
[]

O

21/28

Project using A

We express m;, . i, R as Ap:

!

TR
°

D
°

o

>Cn

o

22/28

Select using A, IT

We express o,—pR as Ap o Ilp:

R oR
[) [}
F
a c1 Cn b x (C1 Cn
D D
[) [}

Here F(a) = F(b) = x and F(¢;) = ¢; for 1 <i < n.

23 /28

Product using II

We express R x R’ as IIg:

R , R

o&c/o

Cl\\D/C,l
.

cy (-

24 /28

Union using X

We express R + R’ as Xp:

R . R
[) Cn (&% []
s e -
c1 D c
[]

R+R'
[]

o
/—\

oI i
>~

o

3

25 /28

FQL - A Functorial Query Language

» The open-source, graphical FQL IDE available at
categoricaldata.net/fql.html implements functorial data migration
(with attributes) in software. FQL translates migrations of the form

EFOHGoAH

into SQL and vice versa.

» Demo

26 /28

FQL evaluation

» Positives:

» Attributes.
» Running on SQL enables interoperability and execution speed.
» Better ¥ semantics than TGD-only systems (e.g., Clio).

» Negatives:
» No selection by constants.
» Relies on fresh ID generation.
» Cannot change type of data during migration.
» Attributes not nullable.

» See our follow-up work for solutions to these problems.

27 /28

Conclusion

| described the functorial data model and data migration functors,

v

» how to extend the functorial data model to have attributes,

» an equivalence

SPCU =~ FQL

where FQL is a fragment of the data migration functors

v

a tool, FQL (categoricaldata.net/fgl.html) based on this equivalence.

28 /28

