
Relational Foundations for Functorial
Data Migration

David Spivak, Ryan Wisnesky

Department of Mathematics
Massachusetts Institute of Technology

{dspivak, wisnesky}@math.mit.edu

DBPL
October 27, 2015

Introduction

§ In this talk I will describe an equivalence between a fragment of the
relational data model (SPCU queries) and a fragment of the
(extended) functorial data model (FQL queries):

SPCU – FQL

§ The functorial data model (my name) originated with Rosebrugh et al.
in the late 1990s.

§ Schemas are categories, instances are set-valued functors.
§ Spivak extends it to solve information integration problems.

§ Sponsored by:
§ ONR grant N000141310260
§ AFOSR grant FA9550-14-1-0031

2 / 28

Category Theory
§ A presentation of a category is a reflexive, directed, labelled,

multi-graph and a set of path equations:

N
‚

g
((

h

66

f
��

M
‚ N.f.f.g = N.f.h

§ A set-valued functor assigns a set to each node and a function to
each edge, such that the equations holds.

N “ N M “ tbillu fpxq “ x` 1 gpxq “ hpxq “ bill @x P N

§ Category theory was instrumental in the development of two
extensions to the relational model, both of which inform work on
language-integrated query (LINQ):

§ The nested relational model generalizes sets to nested collections
and is inspired by monads.

§ Algebraic datatypes implement nested collections using recursion and
are inspired by algebras.

3 / 28

The Functorial Data Model

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zzDom
‚

Emp.manager.works “ Emp.works

Dept.secretary.works “ Dept

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 102 CS

x02 101 Math

Dom

ID

Al

Akin

Bob

Bo

Carl

Cork

CS

Math

4 / 28

Convention
§ Omit Dom table, and draw edges ‚ Ñf ‚Dom as ‚ ´ ˝f :

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zzDom
‚

“

Emp
‚

works //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

5 / 28

The Functorial Data Model (abbreviated)

Emp
‚

works //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

Emp.manager.works “ Emp.works Dept.secretary.works “ Dept

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 102 CS

x02 101 Math

6 / 28

Functorial Data Migration

§ A functor F : S Ñ T is a constraint-respecting mapping:

nodespSq Ñ nodespT q edgespSq Ñ pathspT q

and it induces three adjoint data migration functors:

§ ∆F : T -inst Ñ S-inst (like project)

S
F //

∆F pIq :“ I˝F

66T
I // Set

§ ΠF : S-inst Ñ T -inst (like join)

∆F % ΠF

§ ΣF : S-inst Ñ T -inst (like outer disjoint union then quotient)

ΣF % ∆F

7 / 28

∆ (Project)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

∆F
ÐÝÝ

N

ID Name Salary Age

a Alice $100 20

b Bob $250 20

c Sue $300 30

8 / 28

Π (Join)
Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΠF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 20

b Alice $100 20

c Alice $100 30

d Bob $250 20

e Bob $250 20

f Bob $250 30

g Sue $300 20

h Sue $300 20

i Sue $300 30

9 / 28

Σ (Union)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΣF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 null1
b Bob $250 null2
c Sue $300 null3
d null4 null5 20

e null6 null7 20

f null8 null9 30

10 / 28

Foreign keys

Name
˝

Salary
˝

N1
‚

f // N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary f

1 Alice $100 4

2 Bob $250 5

3 Sue $300 6

N2

ID Age

4 20

5 20

6 30

∆F
ÐÝÝ

ΠF ,ΣF
ÝÝÝÝÝÑ

N

ID Name Salary Age

a Alice $100 20

b Bob $250 20

c Sue $300 30

11 / 28

Evaluation of the functorial data model

§ Positives:
§ The category of categories is bi-cartesian closed (model of the STLC).
§ For each category C, the category C-inst is a topos (model of HOL).
§ Data integrity constraints (path equations) are built-in to schemas.
§ Data migration functors transform entire instances.
§ The FDM is expressive enough for many information integration tasks.
§ Easy to pivot.

§ Negatives:
§ Data integrity constraints (in schemas) are limited to path equalities.
§ Data migrations lack analog of set-difference.
§ No aggregation.
§ Data migration functors are hard to program directly.
§ Instance isomorphism is too coarse for many integration tasks.
§ Many problems about finitely-presented categories are semi-computable:

§ Path equivalence
§ Generating a category from a presentation

12 / 28

The Attribute Problem
N

ID Name Age Salary

1 Alice 20 $100

2 Bob 20 $250

3 Sue 30 $300

– (good)

N

ID Name Age Salary

4 Alice 20 $100

5 Bob 20 $250

6 Sue 30 $300

– (bad)

N

ID Name Age Salary

1 Amy 20 $100

2 Bill 20 $250

3 Susan 30 $300

13 / 28

Solving the Attribute Problem

§ Mark certain edges to leaf nodes as “attributes”.
§ In this extension, a schema is a category C, a discrete category C0, and

a functor C0 Ñ C. Instances and migrations also generalize.
§ Schemas become special ER (entity-relationship) diagrams.
§ The FDM takes C0 to be empty.
§ The example schema below, which was an abbreviation in the FDM, is a

bona-fide schema in this extension: attributes are first, last, and name.

Emp
‚

works //

manager

��
Dept
‚

secretary
oo

first
˝

last
˝

name
˝

14 / 28

Solved Attribute Problem
N

ID Name Age Salary

1 Alice 20 $100

2 Bob 20 $250

3 Sue 30 $300

– (good)

N

ID Name Age Salary

4 Alice 20 $100

5 Bob 20 $250

6 Sue 30 $300

fl (good)

N

ID Name Age Salary

1 Amy 20 $100

2 Bill 20 $250

3 Susan 30 $300

15 / 28

Functorial Data Migration as SPCU

§ Theorem: migrations of the form

ΣF ˝ΠG ˝∆H

§ F is a discrete op-fibration (ensures union compatibility).
§ G is a surjection on attributes (ensures domain independence).
§ all categories are finite (ensures computability).

§ can be implemented using SPCU (select, project, cartesian product,
union) and keygen, under set semantics.

§ are closed under composition.

16 / 28

∆ using SPCU

Given F : S Ñ T and I P T–Inst, define ∆F pIq P S–Inst as:

§ for each node N in S, the table ∆F pNq is IpF pNqq.

§ for each attribute A in S, the table ∆F pAq is IpF pAqq.

§ for each edge e : X Ñ Y in S mapping to a path
F peq : F pXq Ñ F pY q in T , compose IpF peqq to obtain ∆F peq.

S
F //

∆F pIq :“ I˝F

66T
I // Set

17 / 28

Σ using SPCU

Gven F : S Ñ T a discrete op-fibration, a S-instance I, we define
ΣF pIq P T–Inst as

§ for each node N in T , the table ΣF pNq is the union of the node
tables in I that F maps to N .

§ for each attribute A in T , the table ΣF pAq is the union of the
attribute tables in I that F maps to A.

§ Let e : X Ñ Y be an edge in T . We know that for each c P F´1pXq
there is at least one path pc in S such that F ppcq – e. Compose pc to
a single binary table, and define ΣF peq to be the union over all such c.
The choice of pc will not matter.

18 / 28

Discrete Op-Fibrations / Union Compatibility

b1
‚

a1
‚

h1 //g1oo c1
‚

b2
‚

a2
‚

g2oo h2 // c2
‚

a3
‚

g3

hh

h3

((

c3
‚

c4
‚

Ó F

B
‚

A
‚

H //Goo C
‚

19 / 28

Π using SPCU

Given F : S Ñ T with S finite and a S-instance I, we define
ΠF pIq P T–Inst as:

§ too difficult to describe in a presentation.

§ Intuitively, Π is a “join all”

20 / 28

SPCU as Functorial Data Migration

§ Theorem : SPCU (bags) can be implemented using ∆,Σ,Π.

§ Theorem : SPCU (sets) can be implemented using ∆,Σ,Π, dedup,
where dedupT : T–InstÑ T–Inst equates IDs which cannot be
distinguished along any attribute path.

§ We must encode relational schemas, for example, Rpc1, . . . , cnq and
R1pc11, . . . , c

1
n1q becomes:

R
‚

c1
++

¨¨¨

cn

��

R1

‚c1
n1

��
¨¨¨

c1
1ssD

‚

A
˝

21 / 28

Project using ∆

We express πi1,...,ikR as ∆F :

πR
‚

i1

��
¨¨¨ ik

��D
‚

F
ÝÝÝÑ

R
‚

c1

��
¨¨¨ cn

��D
‚

22 / 28

Select using ∆,Π

We express σa“bR as ∆F ˝ΠF :

R
‚

a

**

c1

��
¨¨¨ cn

��
b

ttD
‚

F
ÝÝÝÑ

σR
‚

x

&&

c1

��
¨¨¨ cn

��D
‚

Here F paq “ F pbq “ x and F pciq “ ci for 1 ď i ď n.

23 / 28

Product using Π

We express RˆR1 as ΠF :

R
‚

c1
++

¨¨¨

cn

��

R1

‚c1
n1

��
¨¨¨

c1
1ssD

‚

F
ÝÝÝÑ

RˆR1

‚

c1

**

¨¨¨ cn

��
¨¨¨ c1

1 ¨¨¨

��
c1
n1

ttD
‚

24 / 28

Union using Σ

We express R`R1 as ΣF :

R
‚

c1
++

¨¨¨

cn

��

R1

‚c1
n

��
¨¨¨

c1
1ssD

‚

F
ÝÝÝÑ

R`R1

‚

c1

��
¨¨¨ cn

��D
‚

25 / 28

FQL - A Functorial Query Language

§ The open-source, graphical FQL IDE available at
categoricaldata.net/fql.html implements functorial data migration
(with attributes) in software. FQL translates migrations of the form

ΣF ˝ΠG ˝∆H

into SQL and vice versa.

§ Demo

26 / 28

FQL evaluation

§ Positives:
§ Attributes.
§ Running on SQL enables interoperability and execution speed.
§ Better Σ semantics than TGD-only systems (e.g., Clio).

§ Negatives:
§ No selection by constants.
§ Relies on fresh ID generation.
§ Cannot change type of data during migration.
§ Attributes not nullable.

§ See our follow-up work for solutions to these problems.

27 / 28

Conclusion

§ I described the functorial data model and data migration functors,

§ how to extend the functorial data model to have attributes,

§ an equivalence
SPCU – FQL

where FQL is a fragment of the data migration functors

§ a tool, FQL (categoricaldata.net/fql.html) based on this equivalence.

28 / 28

