Relational Foundations for Functorial Data Migration

David Spivak, Ryan Wisnesky

Department of Mathematics Massachusetts Institute of Technology

{dspivak, wisnesky}@math.mit.edu

DBPL October 27, 2015

Introduction

In this talk I will describe an equivalence between a fragment of the relational data model (SPCU queries) and a fragment of the (extended) functorial data model (FQL queries):

$$SPCU \cong FQL$$

- ▶ The functorial data model (my name) originated with Rosebrugh et al. in the late 1990s.
 - Schemas are categories, instances are set-valued functors.
 - Spivak extends it to solve information integration problems.
- Sponsored by:
 - ONR grant N000141310260
 - AFOSR grant FA9550-14-1-0031

Category Theory

► A **presentation** of a **category** is a *reflexive*, *directed*, *labelled*, *multi-graph* and a set of *path equations*:

A set-valued functor assigns a set to each node and a function to each edge, such that the equations holds.

$$N = \mathbf{N}$$
 $M = \{ \text{bill} \}$ $f(x) = x + 1$ $g(x) = h(x) = \text{bill}$ $\forall x \in \mathbf{N}$

- Category theory was instrumental in the development of two extensions to the relational model, both of which inform work on language-integrated query (LINQ):
 - The nested relational model generalizes sets to nested collections and is inspired by monads.
 - Algebraic datatypes implement nested collections using recursion and are inspired by algebras.

The Functorial Data Model

 $\label{eq:manager.works} Emp.manager.works = Emp.works \\ Dept.secretary.works = Dept$

Emp						
ID	ID mgr works first last					
101	103	q10	Al	Akin		
102	102	×02	Bob	Во		
103	103	q10	Carl	Cork		

Dept				
ID sec name				
q10	102	CS		
x02	101	Math		

Dom	
ID	
Al	
Akin	Γ
Bob	l
Во	
Carl	Γ
Cork	Γ
CS	
Math	Γ

Convention

▶ Omit Dom table, and draw edges $\bullet \rightarrow_f \bullet_{Dom}$ as $\bullet - \circ_f$:

The Functorial Data Model (abbreviated)

Emp.manager.works = Emp.works

Dept.secretary.works = Dept

Emp							
ID	mgr works first last						
101	103	q10	Al	Akin			
102	102	×02	Bob	Во			
103	103	q10	Carl	Cork			

Dept					
ID sec name					
q10	102	CS			
x02	101	Math			

Functorial Data Migration

▶ A functor $F: S \to T$ is a constraint-respecting mapping:

$$nodes(S) \rightarrow nodes(T) \qquad edges(S) \rightarrow paths(T)$$

and it induces three adjoint data migration functors:

▶ Δ_F : T-inst \to S-inst (like project)

$$S \xrightarrow{F} T \xrightarrow{I} \mathbf{Set}$$

$$\Delta_F(I) := I \circ F$$

• $\Pi_F : S$ -inst $\to T$ -inst (like join)

$$\Delta_F \dashv \Pi_F$$

▶ Σ_F : S-inst → T-inst (like outer disjoint union then quotient)

$$\Sigma_F \dashv \Delta_F$$

Δ (Project)

	N1		V 2	
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

			N
	ID	Name	Salary
_	a	Alice	\$100
	b	Bob	\$250
	С	Sue	\$300

Age 20 20

30

$\Pi \; \text{(Join)}$

	N1	1	V2	
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

			N	
	ID	Name	Salary	Age
	a	Alice	\$100	20
	b	Alice	\$100	20
п	С	Alice	\$100	30
$\xrightarrow{\Pi_F}$	d	Bob	\$250	20
	е	Bob	\$250	20
	f	Bob	\$250	30
	g	Sue	\$300	20
	h	Sue	\$300	20
	i	Sue	\$300	30

Σ (Union)

	N1		N 2	
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

			N	
	ID	Name	Salary	Age
	а	Alice	\$100	$null_1$
>	b	Bob	\$250	$null_2$
_	С	Sue	\$300	$null_3$
	d	$null_4$	$null_5$	20
	е	$null_6$	$null_7$	20
	f	$null_8$	$null_9$	30

Foreign keys

	N1				V 2
ID	Name	Salary	f	ID	Age
1	Alice	\$100	4	4	20
2	Bob	\$250	5	5	20
3	Sue	\$300	6	6	30

$\stackrel{\Delta_F}{\longleftarrow}$	
$\xrightarrow{\Pi_F,\Sigma_F}$	

N				
ID	Age			
a Alice		\$100	20	
b	Bob	\$250	20	
С	Sue	\$300	30	

Evaluation of the functorial data model

Positives:

- The category of categories is bi-cartesian closed (model of the STLC).
- For each category C, the category C-inst is a topos (model of HOL).
- Data integrity constraints (path equations) are built-in to schemas.
- Data migration functors transform entire instances.
- ▶ The FDM is expressive enough for many information integration tasks.
- Easy to pivot.

Negatives:

- Data integrity constraints (in schemas) are limited to path equalities.
- Data migrations lack analog of set-difference.
- No aggregation.
- Data migration functors are hard to program directly.
- Instance isomorphism is too coarse for many integration tasks.
- Many problems about finitely-presented categories are semi-computable:
 - Path equivalence
 - Generating a category from a presentation

The Attribute Problem

N				
ID	Name	Age	Salary	
1	Alice	20	\$100	
2	Bob	20	\$250	
3	Sue	30	\$300	

$\cong (good)$

N				
ID	Name	Age	Salary	
4	Alice	20	\$100	
5	Bob	20	\$250	
6	Sue	30	\$300	

 \cong (bad)

N				
ID	Name	Age	Salary	
1	Amy	20	\$100	
2	Bill	20	\$250	
3	Susan	30	\$300	

Solving the Attribute Problem

- Mark certain edges to leaf nodes as "attributes".
 - In this extension, a schema is a category C, a discrete category C_0 , and a functor $C_0 \to C$. Instances and migrations also generalize.
 - ▶ Schemas become special ER (entity-relationship) diagrams.
 - ▶ The FDM takes C₀ to be empty.
 - The example schema below, which was an abbreviation in the FDM, is a bona-fide schema in this extension: attributes are first, last, and name.

Solved Attribute Problem

N				
ID	Name	Age	Salary	
1	Alice	20	\$100	
2	Bob	20	\$250	
3	Sue	30	\$300	

 $\cong (good)$

N					
ID	Name	Age	Salary		
4	Alice	20	\$100		
5	Bob	20	\$250		
6	Sue	30	\$300		

\ncong (good)

N				
ID	Name	Age	Salary	
1	Amy	20	\$100	
2	Bill	20	\$250	
3	Susan	30	\$300	

Functorial Data Migration as SPCU

Theorem: migrations of the form

$$\Sigma_F \circ \Pi_G \circ \Delta_H$$

- F is a discrete op-fibration (ensures union compatibility).
- *G* is a surjection on attributes (ensures domain independence).
- all categories are finite (ensures computability).
- can be implemented using SPCU (select, project, cartesian product, union) and keygen, under set semantics.
- are closed under composition.

Δ using SPCU

Given $F: S \to T$ and $I \in T$ -Inst, define $\Delta_F(I) \in S$ -Inst as:

- for each node N in S, the table $\Delta_F(N)$ is I(F(N)).
- for each attribute A in S, the table $\Delta_F(A)$ is I(F(A)).
- for each edge $e: X \to Y$ in S mapping to a path $F(e): F(X) \to F(Y)$ in T, compose I(F(e)) to obtain $\Delta_F(e)$.

$$S \xrightarrow{F} T \xrightarrow{I} \mathbf{Set}$$

$$\Delta_F(I) := I \circ F$$

$\Sigma \text{ using SPCU}$

Gven $F:S\to T$ a discrete op-fibration, a S-instance I, we define $\Sigma_F(I)\in T\mathbf{-Inst}$ as

- for each node N in T, the table $\Sigma_F(N)$ is the union of the node tables in I that F maps to N.
- for each attribute A in T, the table $\Sigma_F(A)$ is the union of the attribute tables in I that F maps to A.
- Let $e: X \to Y$ be an edge in T. We know that for each $c \in F^{-1}(X)$ there is at least one path p_c in S such that $F(p_c) \cong e$. Compose p_c to a single binary table, and define $\Sigma_F(e)$ to be the union over all such c. The choice of p_c will not matter.

Discrete Op-Fibrations / Union Compatibility

$\Pi \text{ using SPCU}$

Given $F: S \to T$ with S finite and a S-instance I, we define $\Pi_F(I) \in T$ -Inst as:

- too difficult to describe in a presentation.
- ▶ Intuitively, Π is a "join all"

SPCU as Functorial Data Migration

- ▶ Theorem : SPCU (bags) can be implemented using Δ, Σ, Π .
- ▶ Theorem : SPCU (sets) can be implemented using Δ , Σ , Π , dedup, where $dedup_T : T$ -Inst \rightarrow T-Inst equates IDs which cannot be distinguished along any attribute path.
- We must encode relational schemas, for example, $R(c_1,\ldots,c_n)$ and $R'(c'_1,\ldots,c'_{n'})$ becomes:

Project using Δ

We express $\pi_{i_1,...,i_k}R$ as Δ_F :

Select using Δ, Π

We express $\sigma_{a=b}R$ as $\Delta_F \circ \Pi_F$:

Here F(a) = F(b) = x and $F(c_i) = c_i$ for $1 \le i \le n$.

Product using Π

We express $R \times R'$ as Π_F :

Union using Σ

We express R + R' as Σ_F :

FQL - A Functorial Query Language

 The open-source, graphical FQL IDE available at categoricaldata.net/fql.html implements functorial data migration (with attributes) in software. FQL translates migrations of the form

$$\Sigma_F \circ \Pi_G \circ \Delta_H$$

into SQL and vice versa.

Demo

FQL evaluation

- Positives:
 - Attributes.
 - Running on SQL enables interoperability and execution speed.
 - Better Σ semantics than TGD-only systems (e.g., Clio).
- Negatives:
 - No selection by constants.
 - Relies on fresh ID generation.
 - Cannot change type of data during migration.
 - Attributes not nullable.
- ▶ See our follow-up work for solutions to these problems.

Conclusion

- ▶ I described the functorial data model and data migration functors,
- how to extend the functorial data model to have attributes,
- an equivalence

$$SPCU \cong FQL$$

where FQL is a fragment of the data migration functors

▶ a tool, FQL (categoricaldata.net/fql.html) based on this equivalence.